

Astronomy

A Narrative Review of the Formation of Stars and Galaxies

Noel A. Wolfgang

New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA *: All correspondence should be sent to: Dr. Noel A. Wolfgang

Author's Contact. Dr. Noel A. Wolfgang, Ph.D., E-mail: nawolfgang@outlook.com

DOI: https://doi.org/10.15354/si.24.re1031

Funding: No funding source declared.

COI: The author declares no competing interest.

Al Declaration: The author affirms that artificial intelligence did not contribute to the process of preparing the work.

The formation of stars and galaxies is considered one of the most intriguing and fundamental phenomena in the field of astrophysics. The combination of gravity, nuclear fusion, and the enormous expanse of space is the major driving force behind cosmic evolution. Gaining knowledge about the processes of star formation, development, and eventual destruction, as well as the formation and evolution of galaxies over billions of years, reveals the complex and interconnected nature of our universe. This article discusses the complex processes involved in the creation of stars and galaxies. It explores the scientific hypotheses, observational evidence, and technological breakthroughs that have enhanced our understanding of these celestial phenomena.

Keywords: Stars; Galaxies; Astrophysics; Formation; Universe

Science Insights, 2024 July 31; Vol. 45, No. 1, pp.1439-1446.

© 2024 Insights Publisher. All rights reserved.

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed by the Insights Publisher.

Introduction

HE PROCESS of the formation of stars and galaxies is intricate and commences with the collapse of molecular clouds due to the force of gravity. These clouds heat up as they condense, and they eventually reach temperatures that are high enough to trigger nuclear reactions, resulting in the ignition of a star. After a star is formed, it releases energy in the form of light and radiation, which influences the evolution and development of its environment. Through gravitational interactions, galaxies are formed as clusters of stars coalesce over time. Based on the characteristics of their constituent stars, galaxies can exhibit significant variations in size, shape, and composition. The understanding of the universe's origins has been considerably enhanced by the study of star and galaxy formation, which

has illuminated the processes that have influenced our cosmic landscape over billions of years.

Historical Perspectives on Star and Galaxy Formation

One of the earliest hypotheses regarding star formation can be traced back to the ancient Greeks, who held the belief that stars were everlasting and immutable. Not until the 17th century did astronomers like Galileo Galilei and Johannes Kepler start questioning this notion, suggesting that stars were actually dynamic and continuously changing entities (1). This event signaled the commencement of a transformation in our comprehension of the cosmos and established the foundation for contemporary hypotheses regarding the genesis of stars.

During the 19th century, researchers like William Herschel and Lord Kelvin initiated investigations into the notion that stars and galaxies originated from clouds consisting of gas and dust (2). The nebular hypothesis suggests that stars and galaxies were produced by the gravitational collapse of clouds, resulting in the creation of many objects that we see in the night sky. Although the nebular hypothesis has undergone further refinement and expansion, it still serves as a fundamental notion in our comprehension of the formation of stars and galaxies.

Astronomers in the early 20th century, including Edwin Hubble, significantly transformed our comprehension of the cosmos by proving that galaxies were not stationary, but instead moving apart from one another in an expanding manner (3). Hubble's law, a significant finding, offered vital support for the Big Bang theory, which posits that the universe originated from a highly compressed and heated state and has been continuously expanding (4). The Big Bang idea is currently the dominant explanation for the birth of the universe and remains a driving force behind studies on the beginnings of stars and galaxies.

Recent technological breakthroughs, including the use of telescopes and space missions, have provided scientists with the ability to witness the formation of stars and galaxies in exceptional detail. Our knowledge of the mechanisms that control the creation of stars and galaxies has advanced as we have observed the emergence of protostars in dense molecular clouds and identified supermassive black holes in the cores of galaxies (5). These findings have not only illuminated the beginnings of the universe, but have also prompted fresh inquiries into the characteristics of dark matter, dark energy, and the eventual destiny of the cosmos.

Stellar Nucleosynthesis and Star Formation

Stellar nucleosynthesis refers to the nuclear reactions that occur within stars, leading to the formation of elements. This process is essential for the synthesis of atoms beyond hydrogen and helium, as these lighter elements originated in the early cosmos during the Big Bang. During the process of stellar evolution, stars progress through multiple phases of nuclear fusion, resulting in the formation of more massive elements including carbon, oxygen, and iron (6). The presence of a diverse range of elements in the cosmos can be attributed to their formation through nucleosynthesis in the cores of stars.

Stellar nucleosynthesis commences with the fusing of hydrogen atoms to produce helium in the center of a star, a phenomenon referred to as hydrogen burning (7). Nuclear fusion is the predominant process in stars, accounting for most of their energy production. As the star undergoes further development, it will eventually deplete its hydrogen fuel and progress to the fusion of helium, resulting in the creation of heavier elements such as carbon and oxygen. The formation of elements in a star continues throughout its life cycle, with the center of the star producing heavier elements through a series of fusion events.

The synthesis of elements in stars is contingent upon a multitude of conditions, encompassing the temperature, pressure, and composition of the stellar core. In order for nuclear reactions to take place, the temperature and pressure in the core of a star must surpass the electrostatic repulsion between atomic nuclei. Moreover, the constitution of the star core, encompassing

the relative quantity of components such as hydrogen and helium, will impact the formation of other elements through nucleosynthesis.

The life cycle of a star and the process of nucleosynthesis are closely interconnected, as the development of a star is propelled by the nuclear events occurring in its core. During the course of its life cycle, a star will use its fuel and generate heavier elements as a result. Ultimately, the star will reach the conclusion of its lifespan and experience a supernova eruption, dispersing the recently created components into the encompassing interstellar medium. Subsequently, these expelled components will proceed to generate fresh stars and planets, so perpetuating the process of stellar nucleosynthesis.

Nuclear Fusion in Stars

Stars are enormous celestial objects consisting mainly of hydrogen and helium, which are the two lightest elements found in the periodic table. In the center of a star, the conditions are extremely hot and intense, causing hydrogen nuclei to combine and create helium nuclei through the process of nuclear fusion. The fusion reaction generates an immense quantity of energy in the form of gamma rays, which ultimately reach the star's surface and are discharged as light and heat.

The fusion of hydrogen into helium is a finely tuned equilibrium between the gravitational force pulling inward and the outward pressure created by the energy produced during fusion (8). The equilibrium of forces is what maintains the stability of a star and counteracts its gravitational collapse. As a star depletes its hydrogen fuel, the equilibrium between gravity and pressure changes, resulting in the star's progression through various fusion stages, ultimately resulting in the creation of more massive elements such as carbon, oxygen, and iron.

In larger stars, the fusion process can persist and generate elements of greater atomic weight, such as silicon, magnesium, and nickel (9). Ultimately, the fusion reactions cease generating energy, leading to a supernova explosion, dispersing these recently created elements into space, where they can aid in the creation of fresh stars and planets. This universal recycling mechanism guarantees the dispersion of the essential ingredients for life.

Stellar Life Cycle

After the initiation of nuclear fusion, the star transitions into the main sequence stage of its life cycle, which will constitute the majority of its lifespan. During this stage, the star produces energy by undergoing nuclear fusion, namely the conversion of hydrogen into helium in its core. The equilibrium between the expansive force of nuclear fusion and the gravitational force of attraction enables the star to sustain a consistent size and temperature. For a star similar to the sun, this phase can endure for billions of years. However, ultimately, the hydrogen fuel in the core starts to deplete.

As the hydrogen fuel diminishes, the star's core contracts and becomes hotter, resulting in the expansion and cooling of its outer layers. Subsequently, the star proceeds into the red giant phase of its life cycle, during which it expands in size and experiences a significant increase in luminosity. Under certain circumstances, the external layers of the star can be ejected into the

surrounding space, resulting in the creation of a planetary nebula. Ultimately, the central region of the star will undergo further collapse, triggering the fusion of helium and resulting in the contraction of the star into a white dwarf (10).

In the case of larger stars, this progression persists until more substantial materials are combined in the central region, resulting in a sequence of violent reactions that culminate in a supernova event. During a supernova event, the star's outer layers are forcefully expelled into space, generating shockwaves that have the potential to initiate the development of new stars and planetary systems. The remnants of the original star's core have the potential to undergo additional collapse, resulting in the formation of either a neutron star or a black hole, contingent upon its mass (11).

Astronomers must comprehend the life cycles of stars in order to unravel the history and evolution of galaxies and the universe as a whole. Through the examination of various phases of stellar evolution, scientists can acquire significant knowledge about the mechanisms that form the universe and the origins of the materials that constitute our planet. The stellar life cycle, from the formation of a star within a cloud of gas and dust to its demise in a supernova, exemplifies the immense cosmic forces and the captivating interplay of creation and destruction.

Protostellar Evolution and Stellar Classes

Protostellar evolution refers to the sequence of events through which a protostar is created and transforms into a mature star (12). The process commences with the gravitational collapse of a compact cloud of gas and dust in outer space. During the process of cloud collapse, the temperature of the cloud increases, leading to the formation of a protostar in its core. The protostar undergoes accretion, gradually accumulating mass from the surrounding cloud. Eventually, it reaches a critical mass threshold, triggering nuclear fusion in its core and transforming into a fully formed star.

The development of a protostar is impacted by its mass. Protostars having a mass lower than 0.08 solar masses lack the necessary mass to maintain nuclear fusion in their cores, resulting in their transformation into brown dwarfs (13). These objects are not genuine stars as they do not generate energy via nuclear fusion, yet they are larger than gas giant planets.

Conversely, protostars with a high mass, exceeding eight times that of the Sun, undergo a process of evolution and transform into big stars. These stars exhibit shorter lifespans, although they emit more intense and hotter light compared to their low-mass counterparts. High-mass stars experience a far faster evolutionary process, depleting their nuclear fuel within a few million years, in contrast to the billions of years it takes for low-mass stars such as the Sun.

Stellar classes are a taxonomy employed by astronomers to classify stars according to their spectral attributes, temperature, luminosity, and other qualities. The stellar classes are categorized into seven main classes, ranging from O to M (14). O stars are the most scorching and luminous, while M stars are the least warm and faintest. The classes are subdivided into subclasses based on more precise spectral characteristics, such as the existence of specific spectral lines.

Stellar classifications serve as a crucial instrument for as-

tronomers to comprehend the characteristics and progression of stars. Astronomers can deduce the temperature, luminosity, size, and mass of a star by analyzing its spectral features. This information, in turn, offers insights on the star's age, composition, and future development. Therefore, the investigation of protostellar evolution and stellar classifications is essential in order to unravel the mysteries of the cosmos and comprehend the life cycles of stars in the universe.

Formation of Protostars

The formation of protostars is a pivotal phase in the life cycle of stars. During this phase, a cloud of gas and dust undergoes gravitational collapse, leading to the formation of a compact core that will eventually develop into a mature star. The process of protostar formation is intricate and encompasses several discrete stages that ultimately culminate in the emergence of a nascent star.

Protostar formation commences with the gravitational collapse of a frigid and compact molecular cloud composed of gas and dust. Molecular clouds are extensive repositories of gas and dust that can extend over hundreds of light-years in size. Over time, specific areas inside these clouds see an increase in density and gravitational instability, which triggers the start of the collapse.

As the cloud undergoes gravitational collapse, the heightened pressure and temperature at the central region initiate nuclear fusion processes. The statement signifies the commencement of the second phase of protostar formation, which is referred to as the T Tauri phase. In this stage, the protostar starts emitting energy and heat while it continues to gather more material from its surrounding disk of gas and dust.

As the protostar increases in size and mass, it also starts to form a rotating disk of material surrounding it. This disk is essential in the process of planet and celestial body formation inside the protostellar system (15). The protostar undergoes a process of accretion, where it gathers material from the surrounding disk. This causes the protostar to increase in size and brightness as it advances towards the latter phases of its formation.

Ultimately, the protostar reaches a stage where the nuclear fusion processes in its core achieve stability and equilibrium, signifying the conclusion of the formation phase. At this stage, the protostar undergoes a transition and officially enters the main sequence phase, embarking on its path towards maturity. The formation of protostars is a vital phase in the stellar evolution and significantly influences the composition and structure of the universe as we understand it.

Main Sequence Stars

Main sequence stars, which constitute around 90% of all stars, are the most prevalent type of stars in the universe. These stars are now in a stable period of their lifespan, during which they are undergoing nuclear fusion of hydrogen into helium in their cores. This process generates energy and thermal radiation, resulting in the star emitting brilliant light. Main sequence stars play a crucial role in comprehending the life cycle of stars and the genesis of galaxies.

The size and temperature of main sequence stars are key

distinguishing features. The size of these stars can vary, ranging from small and colder stars like red dwarfs to huge and hot stars like blue giants. The temperature of a main sequence star is intimately correlated with its color, whereas cooler stars have a red hue, and hotter stars exhibit a blue hue (16). The sun is a yellow dwarf, which is a main sequence star, and it has a temperature of approximately 5,500 degrees Celsius.

Main sequence stars exhibit a consistent pattern of evolution that is determined by their mass. Stars with greater mass will consume their hydrogen fuel at an accelerated rate and ultimately transform into red giants and supernovae. Stars with lower mass, such as our sun, will gradually undergo expansion and transform into red giants, eventually shedding their outer layers and transitioning into white dwarfs. Understanding the formation of elements in the universe relies heavily on this evolution, as main sequence stars play a pivotal role in the creation of elements like helium, carbon, and oxygen.

Studying main sequence stars has provided astronomers with insights into the origin and duration of galaxies. By examining the dispersion and attributes of main sequence stars in various galaxies, scientists can ascertain the age and progression of those galaxies. Main sequence stars can yield vital insights into the composition and structure of galaxies, as their emitted light can be utilized to examine the gas and dust enveloping them.

Galactic Structure and Formation

The Milky Way galaxy, which encompasses Earth and our solar system, is an expansive and intricate formation that continues to be examined by astronomers and scientists. The galaxy has an estimated diameter of approximately 100,000 light-years and is comprised of billions of stars, along with gas, dust, and other celestial objects. Gaining knowledge about the composition and creation of our galaxy can enhance our comprehension of our position in the cosmos and the progression of galaxies throughout history.

The formation of the Milky Way galaxy is estimated to have occurred approximately 13.6 billion years ago, in close proximity to the occurrence of the Big Bang (17). The galaxy is classified as a spiral galaxy, characterized by a disk shape with spiral arms that radiate from a central bulge. The spiral arms consist of youthful, high-temperature stars, along with gas and dust, but the central bulge has older stars and exhibits significantly higher density compared to the arms. The Milky Way possesses an encompassing halo of dark matter, which is imperceptible but exerts a gravitational influence on the stars and other entities within the galaxy.

The genesis of the Milky Way galaxy is thought to have occurred through a gradual amalgamation of smaller galaxies and the accumulation of gas and dust from the surrounding cosmos (18). Gradually, the gravitational force exerted by the galaxy attracted an increasing amount of matter, resulting in the expansion of stars, planets, and other celestial bodies. In addition, astronomers have detected indications of galactic collisions and interactions, which have the potential to disturb the organization of a galaxy and result in the creation of novel celestial bodies, such as stars.

The composition of the Milky Way galaxy can be dissect-

ed into many constituents, such as the central bulge, the disk, the spiral arms, and the halo (19). Each of these components contributes to the formation of the galaxy's structure and affects the movement of stars and other celestial objects within it. The central bulge of the galaxy contains a supermassive black hole positioned at its core, which exerts a significant gravitational attraction on the surrounding stars and dust. Conversely, the spiral arms are areas characterized by vigorous star formation, when new stars are generated, and old stars reach the end of their life cycles.

Recently, astronomers have made notable progress in comprehending the structure and formation of galaxies, owing to the introduction of new technologies and observational methods. An instance of this is the Gaia space telescope, which was launched by the European Space Agency in 2013 (20). It has been meticulously charting the precise locations and motions of stars inside the Milky Way, achieving an unparalleled level of accuracy. By utilizing this data, scientists have been able to construct intricate three-dimensional representations of the galaxy and analyze its evolutionary trajectory. Through ongoing investigation and exploration, our comprehension of the structure and genesis of the Milky Way galaxy, along with other galaxies in the cosmos, will progressively expand.

Galactic Dynamics

Galactic dynamics is a field of astrophysics that focuses on the motion and interactions of celestial objects within galaxies. It aims to comprehend the gravitational forces, orbital movements, and structures that influence the behavior of galaxies on a grand scale. Through the examination of galactic dynamics, scientists might acquire understanding regarding the origin, development, and eventual destiny of galaxies, as well as the arrangement of stuff within them.

Dark matter is a significant notion in galactic dynamics. It is a mystery substance that lacks the ability to emit, absorb, or reflect light. However, it does exert a gravitational force on visible matter. Dark matter comprises approximately 85% of the total mass in the universe and exerts a substantial influence on the movements of stars and gas within galaxies (21). Through the examination of the movements and interactions of individual stars and gas clouds, scientists are able to deduce the arrangement of dark matter within galaxies and enhance their comprehension of its influence on the formation of galactic structures.

Galactic rotation curves are an important component of galactic dynamics (22). These curves illustrate the velocity of stars and gas in relation to their distance from the center of a galaxy. Within a normal galaxy, the rotational velocity remains consistently steady even when observing from far distances away from the central region. This contradicts the expectations of Newtonian gravity, which is solely based on observable matter. The disparity has prompted scientists to posit the presence of dark matter as a potential cause of the extra gravitational force that explains the observed flat rotation curves.

Galactic dynamics is essential for comprehending the interactions, mergers, and collisions of galaxies. When two galaxies approach one other closely, their gravitational fields can deform and contort, leading to interactions and mergers between stars and gas. These interactions have the potential to initiate

highly energetic episodes of star formation, disturb pre-existing structures, and ultimately result in the creation of new galaxies. Through the examination of the dynamics of galaxies that interact with each other, scientists can acquire understanding about the mechanisms that propel the evolution of galaxies and influence the wide range of galaxies we observe in the universe.

Furthermore, the field of galactic dynamics has significant ramifications for the study of cosmology and the examination of the overall structure of the universe on a massive scale (23). Through the process of recording the movements and spatial arrangements of galaxies on a cosmic scale, scientists are able to deduce the fundamental gravitational forces that control the development and changes of galaxy clusters, superclusters, and filaments. These formations offer significant insights about the spatial arrangement of matter in the universe, the rate at which the cosmos is expanding, and the characteristics of dark energy, an enigmatic entity responsible for the accelerated expansion of the universe.

Role of Dark Matter in Galaxy Formation

Dark matter is essential for the creation and development of galaxies. Dubbed as dark matter, this intangible entity constitutes approximately 27% of the observable cosmos, exerting gravitational forces that impact the actions of visible matter. During the initial phases of galaxy formation, dark matter serves as the framework upon which regular matter can amass and subsequently give rise to stars (21). Dark matter remains crucial in altering the structure and dynamics of galaxies as they undergo growth and evolution. The presence of dark matter influences the gravitational forces that govern the interactions between galaxies, hence affecting their mergers, collisions, and overall distribution in the universe. Gaining insight into the function of dark matter in the process of galaxy formation is crucial for astronomers to comprehend the enigmas surrounding the formation and organization of our universe as it exists in its current state.

Dark Matter Properties and Distribution

Dark matter is a mysterious element that constitutes approximately 27% of the universe, however its characteristics and distribution remain unknown to scientists. Scientists have successfully studied dark matter by observing its gravitational impact on visible stuff, despite the fact that dark matter itself cannot be directly observed. Dark matter possesses the crucial characteristic of being non-interacting with electromagnetic radiation, rendering it unobservable using conventional telescopes. Dark matter is characterized by its lack of emission, absorption, or reflection of light, rendering it highly challenging to investigate.

Scientists have successfully deduced certain fundamental characteristics of dark matter despite its enigmatic nature, employing a range of experiments and observations (24). Dark matter is characterized by the absence of any known particles in the Standard Model of particle physics, which is a significant attribute. Scientists have postulated the presence of novel, yet unknown particles that constitute dark matter. WIMPs, or Weakly Interacting Massive Particles, are theoretical particles that are believed to solely interact through gravity and the weak

nuclear force, making their detection extremely challenging (25).

The dispersion of dark matter throughout the universe is another significant characteristic. Researchers have noted that dark matter exhibits an uneven distribution, instead forming substantial halos around galaxies and galaxy clusters (26). The dark matter halos possess a significantly higher mass compared to the visible matter enveloping them. Their gravitational influence is responsible for the cohesion of galaxies and prevents their disintegration. The arrangement of dark matter is crucial in determining the overall structure of the universe on a massive scale. It serves as the gravitational framework that enables the formation of galaxies and clusters of galaxies.

An intriguing characteristic of dark matter distribution is its higher prevalence in the outer regions of galaxies, as opposed to their inner regions. Scientists have concluded that dark matter exhibits a greater degree of interaction among its own particles compared to visible matter (27). This interaction leads to the aggregation and clustering of dark matter in the outer regions of galaxies. The confirmation of this distribution has been achieved by observing gravitational lensing, a phenomenon in which the deflection of light from distant galaxies provides evidence of the existence of dark matter halos surrounding nearby galaxies.

Dark Matter's Influence on Galaxy Evolution

The gravitational attraction exerted by dark matter is a crucial factor in shaping the evolution of galaxies. Dark matter is believed to function as a structural support, serving as the underlying foundation for the formation and development of galaxies. The gravitational force of black holes influences the movement of stars and gas in galaxies, as well as the overall structure and arrangement of stuff in them (28). The gravitational effect is essential in determining the dimensions, composition, and movement of galaxies. Dark matter also contributes to the formation of galaxy clusters, which are collections of galaxies held together by gravitational forces. The gravitational force exerted by dark matter facilitates the mutual attraction between galaxies, hence facilitating the formation of these immense structures. The spatial arrangement of dark matter within galaxy clusters can also influence the motion of galaxies within them, as well as their interplay with one another. This, in turn, can have an impact on the general development of galaxies inside clusters.

Dark matter not only influences individual galaxies and galaxy clusters, but also has a role in shaping the general large-scale structure of the universe. Dark matter is believed to be the cause of the creation of the cosmic web, an extensive system of filaments and empty spaces that link galaxies throughout the universe (29). The spatial arrangement of dark matter within the cosmic web has the ability to impact the motion and interactions of galaxies across vast cosmic distances, therefore playing a crucial role in determining the overall evolution of the universe.

Moreover, dark matter is believed to contribute to the genesis of galaxies by furnishing the first circumstances for their emergence. Dark matter in the early universe facilitated the initiation of structures that later developed into galaxies. The spatial arrangement of dark matter in the primordial cosmos exerted a significant impact on the evolutionary trajectory of galaxies,

ultimately dictating their dimensions, morphology, and constituent elements. The formation and evolution of galaxies, as we understand them, would likely have been impossible without the presence of dark matter.

Interactions and Mergers in Galaxy Evolution

Galactic Collisions and Mergers

Galactic collisions and mergers are highly remarkable occurrences in the universe that have the potential to significantly influence the development of galaxies. When two galaxies collide, their stars, gas, and dust might combine, resulting in the formation of a larger galaxy through a process called merging (30). These events can significantly influence the development and progression of galaxies, as well as the black holes located at their cores.

Collisions and mergers between galaxies are frequent occurrences in the universe. Indeed, our very own Milky Way galaxy is currently on a trajectory that will lead to a collision with the adjacent Andromeda galaxy. This cosmic event is anticipated to occur in approximately 4 billion years. During galactic collisions, the stars contained within them generally undergo close encounters without colliding, owing to the immense distances separating them. Nevertheless, the gravitational interactions among galaxies can result in tidal forces capable of displacing stars from their initial orbits and into alternative ones.

As the galaxies undergo merging, the collision and interaction of the gas and dust within them might stimulate episodes of star formation. This can lead to the emergence of fresh stars and the establishment of novel stellar groupings. Galactic mergers can induce the creation of large black holes due to the strong gravitational forces involved (31). This occurs when the gas and dust from the merging galaxies are directed towards the cores. As these black holes accumulate more material, they can increase in size and eventually transform into supermassive black holes.

The formation of elliptical galaxies is one of the most remarkable outcomes of galactic collisions and mergers. Contrary to the spiral configuration observed in several galaxies, elliptical galaxies exhibit a circular or oval shape, characterized by the presence of older stars and a scarcity of continuing star formation (32). It is believed that these galaxies are formed by the merger of smaller galaxies, causing the original spiral structure to be disrupted and resulting in the creation of a new, larger galaxy with an elliptical shape. Examining galactic collisions and mergers can yield vital insights into the mechanisms that propel the formation and development of galaxies. Astronomers can gain insights into the growth and evolution of galaxies over time by closely studying these events at various phases of formation. Additionally, they can investigate the function of black holes in these phenomena, along with the influence of mergers on the dispersion of dark matter inside galaxies.

Impact on Stellar Populations

The fundamental consequence of galactic collisions and mergers on stellar populations is the genesis of new stars. The powerful gravitational forces involved in these occurrences can initiate the formation of large stars in areas abundant in gas, resulting in the birth of early, high-temperature stars. The formation of these recently emerged stars can significantly alter the overall makeup of the stellar population in the galaxy, introducing younger and more massive stars into the mix.

Galactic collisions and mergers not only generate new stars but also disturb the pre-existing stars within the galaxies involved. During the process of galactic interaction, the gravitational forces cause stars to deviate from their usual paths, resulting in their expulsion into the space between galaxies or their attraction towards the merging centers of the galaxies. This disturbance has the potential to cause the obliteration of older, less massive stars and the reorganization of stellar communities within the galaxies affected.

In addition, galactic collisions and mergers can also initiate events such as starbursts and active galactic nuclei (AGN) (33). During a starburst event, the rate of stellar formation in a galaxy experiences a significant rise, resulting in the generation of a substantial quantity of youthful, high-temperature stars. An AGN occurs when matter accumulates onto a supermassive black hole located at the core of a galaxy, resulting in the release of immense quantities of energy. Both of these events can exert a substantial influence on the star populations within galaxies and contribute to the general evolution of the galactic system.

Galactic collisions and mergers have a significant impact on stellar populations by causing the intermingling of stars from various galaxies. When galaxies merge, the stars inside them might mix together, resulting in the creation of a more uniform group of stars in the newly created galaxy. This process of mixing can eliminate certain unique attributes of the parent galaxies, resulting in a more homogeneous distribution of stars within the newly formed galactic system.

Impact on Stellar Morphology

Galactic collisions and mergers are vital in determining the structure and form of galaxies. Galaxies can merge when their gravitational forces combine, leading to the formation of a bigger galaxy with a distinct morphology. These interactions can result in morphological alterations, including the emergence of tidal tails, bridges, and rings, as well as the disturbance of spiral arms and the formation of novel structures within the galaxy (34).

Tidal tails are a prominent outcome of galactic collisions and mergers. When two galaxies undergo interaction, the gravitational forces exerted between them can extract streams of stars and gas material, resulting in the formation of elongated, dim tails that extend from the primary structures of the galaxies (35). Tidal tails are frequently observed in interacting galaxies and offer astronomers significant information about the physics of the collision and merging process.

Galactic collisions and mergers also result in the creation of bridges between galaxies, which is another morphological consequence. These bridges are formed through the gravitational attraction of material from one galaxy towards another, resulting in the formation of intergalactic bridges composed of stars and gas (36). Bridges are frequently observed in galaxy pairs or groups undergoing merger, and they have the potential to substantially modify the overall appearance and morphology of the involved galaxies.

Galactic collisions can give rise to the creation of rings inside galaxies, in addition to tidal tails and bridges. During the merger of two galaxies, the gas and stars from each galaxy can be redistributed in a manner that results in the formation of a ring-like structure encircling the center bulge of the newly formed galaxy. Merging galaxies frequently exhibit these rings, which offer astronomers vital insights into the merger history and dynamics of the involved galaxies.

Moreover, the occurrence of galactic collisions and mergers can cause disturbances in the spiral arms of galaxies, resulting in the formation of novel structures within the galaxy (37). When galaxies contact and merge, the gravitational forces between them can deform or entirely break the spiral arms. This can lead to the emergence of novel formations such as bars, rings, or irregular forms inside the galaxy, so modifying its general morphology and visual characteristics.

Conclusion

The genesis of stars and galaxies is a pivotal phenomenon in the progression of the cosmos. Stars form from immense clouds of gas and dust, consisting mainly of hydrogen and helium, via a process called stellar nucleosynthesis. These clouds experience gravitational collapse, during which the high pressure and temperature at their cores trigger nuclear fusion events that generate energy and light. As additional matter accumulates onto the protostar, its size and brightness increase until it achieves a stable state on the main sequence. Galaxies are vast assemblages of stars, gas, dust, dark matter, and different stellar remnants that are bound together by the force of gravity. Their formation is believed to have been shaped by minor variations in density in the early universe, which gradually increased through successive merging processes. Astronomers have obtained valuable insights into the creation and evolution of cosmic structures by examining these events using modern telescopes and simulations.

References

- Westman RS. Johannes Kepler. Encyclopedia Britannica. Last access: July 5, 2024. Available at: https://www.britannica.com/biography/Johannes-Kepler
- Mathis JS. Nebula. Encyclopedia Britannica. Last access: May 31, 2024. Available at: https://www.britannica.com/science/nebula
- Hodge PW. Galaxy. Encyclopedia Britannica. Last access: July 13, 2024. Available at: https://www.britannica.com/science/galaxy
- NASA. What does Hubble's Law mean? Last access: July 13, 2024. Available at: https://imagine.gsfc.nasa.gov/features/yba/M31_velocity/hubble_law/hubble_meaning.html
- Lada CJ. Star formation in the galaxy: An observational overview. Prog Theor Phys Supp 2005; 158:1-23. DOI: https://doi.org/10.1143/PTPS.158.1
- NASA. A guide to understanding stellar evolution. Last access: July 13, 2024. Available at: https://chandra.si.edu/stellarev/
- Arnould M, Goriely S. The p-process of stellar nucleosynthesis: Astrophysics and nuclear physics status. Phys Rep 2003; 384(1-2):1-84. DOI: https://doi.org/10.1016/S0370-1573(03)00242-4
- Grinin L, Grinin A. The star-galaxy era in terms of big history and universal evolution. J Big Hist 2019; 3(4):69-92. DOI: https://doi.org/10.22339/jbh.v3i4.3444
- Mason BH, Tayler RJ, Lagowski JJ. Chemical element. Encyclopedia Britannica, Last access: June 19, 2024. Available at: https://www.britannica.com/science/chemical-element
- 10. Stahler SW. Protostars. In: Gargaud, M., et al. Ency-

- clopedia of Astrobiology. Springer, Berlin, Heidelberg. pISBN: 978-3-642-11271-3. 2011; DOI: https://doi.org/10.1007/978-3-642-11274-4_1304
- Kochanek CS. Constraints on core collapse from the black hole mass function. Mon Not R Astron Soc 2015; 446(2):1213-1222. DOI: https://doi.org/10.1093/mnras/stu2056
- Ahmad A, González M, Hennebelle P, Commerçon B. The birth and early evolution of a low-mass protostar. Astron Astrophys 2023; 680 A23. DOI: https://doi.org/10.1051/0004-6361/202346711
- Reid IN. Brown Dwarfs. In: Oswalt, T.D., Barstow, M.A. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht. pISBN: 978-94-007-5614-42013. DOI: https://doi.org/10.1007/978-94-007-5615-1_7
- Britannica T. Stellar classification. Encyclopedia Britannica. Last access: May 17, 2024. Available at: https://www.britannica.com/science/stellar-classification
- Mignon-Risse R, Oliva A, González M, Kuiper R, Commerçon B. Disk fragmentation around a massive protostar: Comparison of two 3D codes. Astron Astrophys 2023; 672:A88. DOI: https://doi.org/10.1051/0004-6361/202243514
- Vinyard RL, Pfeiffer JJ. Using Color Component Overlays for Result Visualization in a Classification by Sketch System. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds) Diagrammatic Representation and Inference. Diagrams 2004. Lecture Notes in Computer Science, 2004; 2980. Springer, Berlin, Heidelberg. pISBN: 978-3-540-21268-3. DOI: https://doi.org/10.1007/978-3-540-25931-2_51
- Xiang M, Rix HW. A time-resolved picture of our Milky Way's early formation history. Nature 2022; 603:599-603. DOI:

- https://doi.org/10.1038/s41586-022-04496-5
- Robin AC, Reylé C, Derrière S, Picaud S. A synthetic view on structure and evolution of the Milky Way. Astron Astrophys 2003; 409(2):523-540. DOI: https://doi.org/10.1051/0004-6361:20031117
- Hodge PW. Milky Way Galaxy. Encyclopedia Britannica, Last access: July 11, 2024. Available at: https://www.britannica.com/place/Milky-Way-Galaxy
- ESA. How does Gaia study the Milky Way? Last access: July 10, 2024. Available at:
 https://www.esa.int/Science Exploration/Space Science/Gaia/How does Gaia study the Milky Way
- 21. NASA. Dark matter & dark energy. Last access: July 10, 2024. Available at: https://science.nasa.gov/universe/dark-matter-dark-energy/
- 22. Bovy J. Dynamics and Astrophysics of Galaxies. Last access: July 10, 2024. Available at: https://galaxiesbook.org/chapters/II-02.-Galactic-Rotation.html
- Bernardeau F, Colombi S, Gaztañaga E, Scoccimarro R. Large-scale structure of the Universe and cosmological perturbation theory. Phys Rep 2002; 367(1–3):1-248. DOI: https://doi.org/10.1016/S0370-1573(02)00135-7
- Hecht J. Dark matter: What's the matter? Nature 2016; 537:S194-S197. DOI: https://doi.org/10.1038/537S194a
- 25. Battat JBR, Irastorza IG, Aleksandrov A, Asada T, Baracchini E, Billard J, Bosson G, Bourrion O, Bouvier J, Buonaura A, Burdge K, Cebrián S, Colas P, Consiglio L. Dafni T. D'Ambrosio N. Deaconu C. De Lellis G, Descombes T, Di Crescenzo A, Di Marco N, Druitt G, Eggleston R, Ferrer-Ribas E, Fusayasu T, Galán J, Galati G, García JA, Garza JG, Gentile V, Garcia-Sciveres M, Giomataris Y, Guerrero N, Guillaudin O, Guler AM, Harton J, Hashimoto T, Hedges MT, Iguaz FJ, Ikeda T, Jaegle I, Kadyk JA, Katsuragawa T, Komura S, Kubo H, Kuge K, Lamblin J, Lauria A, Lee ER, Lewis P, Leyton M, Loomba D, Lopez JP, Luzón G, Mayet F, Mirallas H, Miuchi K, Mizumoto T, Mizumura Y, Monacelli P, Monroe J, Montesi MC, Naka T, Nakamura K, Nishimura H, Ochi A, Papevangelou T, Parker JD, Phan NS, Pupilli F, Richer JP, Riffard Q, Rosa G, Santos D, Sawano T, Sekiya H, Seong IS, Snowden-Ifft DP, Spooner NJC, Sugiyama A, Taishaku R, Takada A, Takeda A, Tanaka M, Tanimori T, Thorpe TN, Tioukov V, Tomita H, Umemoto A, Vahsen SE, Yamaguchi Y, Yoshimoto M, Zayas E. Readout technologies for directional WIMP Dark Matter detection. Phys Rep 2016; 662:1-46. DOI:
 - $\underline{https://doi.org/10.1016/j.physrep.2016.10.001}$

- Yepes G, Gottlöber S, Hoffman Y. Dark matter in the Local Universe. New Astron Rev 2014; 58:1-18. DOI: https://doi.org/10.1016/i.newar.2013.11.001
- McGaugh SS, Lelli F, Schombert JM. Radial acceleration relation in rotationally supported galaxies. Phys Rev Lett 2016; 117:201101. DOI: https://doi.org/10.1103/PhysRevLett.117.201101
- 28. Scharf C. How black holes shape the galaxies, stars and planets around them. Sci Am 2012; 307(2):34-39. Available at:

 https://www.scientificamerican.com/article/how-black-holes-shape-galaxies-stars-planets-around-them/
- Simcoe R. The cosmic web. American Scientist. Last access: June 23, 2024. Available at: https://www.americanscientist.org/article/the-cosmic-web
- Koren M. Look at what happens when two galaxies collide. The Atlantic. Last access: June 23, 2024. Available at:
 https://www.theatlantic.com/science/archive/2022/08/gal-axy-mergers-colliding-cosmic-matter-milky-way-andromeda/671164/
- Yang Y, Bartos I, Gayathri V, Ford KES, Haiman Z, Klimenko S, Kocsis B, Márka S, Márka Z, McKernan B, O'Shaughnessy R. Hierarchical black hole mergers in active galactic nuclei. Phys Rev Lett 2019; 123:201101. DOI: https://doi.org/10.1103/physrevlett.123.181101
- Lacerna I, Hernández-Toledo HM, Avila-Reese V, Abonza-Sane J, Del Olmo A. Isolated elliptical galaxies in the local Universe. Astronomy & Astrophysics 2016; 588: A79. DOI: https://doi.org/10.1051/0004-6361/201527844
- Struck C. Galaxy collisions. Phys Rep 1999;
 321:1-137. DOI: https://doi.org/10.1016/S0370-1573(99)00030-7
- Barnes JE. Transformations of galaxies III. Encounter dynamics and tidal response as functions of galaxy structure. Mon Not R Astron Soc 2015; 455:1957-1980. DOI: https://doi.org/10.1093/mnras/stv2381
- Gardner S, McDermott SD, Yanny B. The Milky Way, coming into focus: Precision astrometry probes its evolution and its dark matter. Prog Part Nucl Phys 2021; 121:103904. DOI: https://doi.org/10.1016/j.ppnp.2021.103904
- 36. Barnes J, Hernquist L, Schweizer F. Colliding Galaxies. Sci Am 1991; 265(2):40-47.
- Lambas DG, Alonso S, Mesa V, O'Mill AL. Galaxy interactions. Astron Astrophys 2012; 539:A45. DOI: https://doi.org/10.1051/0004-6361/201117900

Received: April 17, 2024 | Revised: June 01, 2024 | Accepted: June 10, 2024