Materials

Alkynyl-Containing Discotic Liquid Crystal Molecules

Tammy Jing*
Lab of Innovation and Development (LOID), BlueCrystal, Inc., New York, NY 11102, USA
*
All correspondence should be sent to: Tammy Jing.
Author's Contact. Tammy Jing, MSc, E-mail: tammyjing@bluecrystal.com
DOI: https://doi.org/10.15354/si.22.re075
Funding. No funding source declared.
COI: The author declares no competing interest.

Under specific circumstances, organized columnar phases can be formed from the planar discoid shapes of the molecules that make up discotic liquid crystals. These materials offer unusual features because of their distinct columnar phase structure. They are utilized in organic semiconductors, liquid crystal magnetic materials, and photoelectric conversion. It has numerous applications, so researchers are paying more and more attention to it. In this paper, the effects of alkynyl groups on the properties of discotic liquid crystals at various positions are emphatically discussed. The main focus is on the alkynyl-containing discotic liquid crystal molecules and their properties reported in domestic and foreign literature in the past ten years.

Keywords: Discotic Liquid Crystal; Alkynyl Group; Organic Semiconductor; Polymers

© 2022 Insights Publisher. All rights reserved.
Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed by the Insights Publisher.

STUDIES have been conducted on the synthesis and characterization of discotic liquid crystal molecules of different configurations since Chandrasekhar (1) originally described the synthesis and characterization of discotic liquid crystal molecules in 1977. Thousands of different chemicals have been created thus far. A molecule with a planar discoid shape that can be ordered to produce a liquid crystal state when specific circumstances are met is known as a discotic liquid crystal molecule. The flexible components are primarily aliphatic long chains, whose function is to introduce perturbation factors into the rigid system and increase the solubility of the compound. It can be adjusted through the packing mode of these planar molecules under suitable conditions and promulgate the orderly arrangement in a one-dimensional direction. Many different types of rigid central cores exist, but the most common are poly(fused) ring aromatic hydrocarbons that achieve orderly arrangement in a one-dimensional direction through the interaction of plane molecules.

A distinct columnar phase structure can be formed by the molecules of discotic liquid crystals. The molecules have one-dimensional order and are aligned in a direction perpendicular to the discoid plane in the columnar phase. The columnar arrangement forms a quasi-one-dimensional conjugated electron cloud distribution when the discotic mesogen itself exhibits electron conjugation. Because of their structural characteristics, discotic liquid crystals have promising futures as optoelectronic materials (2-5). Additionally, when compared to crystals with similar columnar stacking, the discotic liquid crystal system's defects are greatly reduced by the self-healing function caused by the perturbation of flexible chains and specific molecular mobility. The discotic liquid crystal molecules also reflect the fact that, as a semiconductor material, it has special advantages in carrier transport.

High order and good charge transport capabilities, a stable hexagonal columnar liquid crystal phase, and a broad mesogenic temperature range are the main determinants of the usefulness of discotic liquid crystal materials as optoelectronic and semiconductor materials. The phase state, phase transition temperature,
and stability of the phase state of the discotic compound can all be changed to satisfy these parameters. After the central core has been established, the structural modification of a discotic liquid crystal’s performance also depends on changes to the flexible chain surrounding the core, such as altering the connection mode between the flexible chain and the core or the length of the flexible chain, adding functional groups, creating oligomers or polymers of the discotic liquid crystal (6-8). For instance, Rego (9) incorporated alkyne groups directly into liquid crystal molecules, whereas Axenov et al. (10) used unsaturated alkyne groups to produce liquid crystal compounds with low melting points, a wide temperature range of the mesogenic phase, and stable mesogenic phases. The substance exhibits good liquid crystallinity on the triphenylene core’s stiff structure. This paper primarily introduces the alkyne-containing discotic liquid crystals; the striking modifications in the mesogenicity and semiconducting characteristics of various discotic central cores and dimers following the addition of alkylnyl groups; and the development of polyalkyne-based discotic liquid crystal polymers.

Discotic Liquid Crystal Molecules

Discotic Liquid Crystals Based on Alkynyl

Benzene Ring Derivatives

Previous studies naturally focused on molecules made from a single benzene ring structure, since the benzene ring is the fundamental building block of aromatic chemicals. Numerous discotic liquid crystals of benzene derivatives have appeared since the initial finding of hexa substituted ester-containing benzene derivatives in 1977.

By using Wolff-Kishner reduction and a palladium-catalyzed coupling reaction, Kumar et al. created branched alkyl-substituted hexaethynylbenzene derivatives, which displayed a nematic discotic liquid crystal phase at room temperature and increased the viewing angle of the liquid crystal display (11). Additional research found that the substituents’ and connecting atoms’ chain length affects how these compounds behave in liquid crystals. Such molecules can also have their liquid crystal behavior controlled by adding electron acceptors, which results in charge transfer effects on the molecules (12).

According to Varshney et al. (13), the achiral alkyl branch of the radioactive polyalkynyl benzene series forms a columnar phase (Col), although the regular alkyloxy branch also forms a columnar phase (Col). When chiral alkoxy branches are present, a chiral nematic-discotic phase (ND*) forms in addition to the nematic-discotic phase (ND). The phase transition temperature was successfully decreased to room temperature by the “molecular symmetry effect,” and the charge transfer complex and 2,4,7-trinitrofluorenyl-9-one (TNF) produced a univariate hexagonal columnar phase (Colh). Further utilizing these compounds’ molecular rotational characteristics for effective charge transfer was done by Lee et al. (14). Henrich et al. investigated highly polarizable C3-symmetric 1,3,5-trialkynyl benzene series and discovered that these compounds not only exhibited the tetragonal columnar phase (Colr), Colh, and ND phases, but also intense fluorescence, a clear Stokes shift, and general photoconductivity (15). Triethynylbenzene was used by Ryu et al. to create star-shaped 1,3,5-trialkynylbenzene derivatives. At room temperature, they noticed a CO2 phase and a vertical alignment tendency (16).

Phenylene and Acetylene Macrocycles

Fischer et al. created the first macroyclic compounds in 1994 (17). Macrocycles have rigid alkyne or lower alkyne units that serve as bridges and aromatic or antiaromatic groups at the margins. Macrocycles typically have a triangular or hexagonal form. The smallest macrocyclic compounds have been created by Seo et al., who also confirmed how side chains affect mesogenicity (18).

Large triangular and hexagonal compounds were created by Li et al. (19) and Fritzsch et al. (20), using the Sonogashira-Hagihara and oxidative glaser coupling processes, respectively. The phenylene spacing and the existence of aryl groups in the edge unit allowed for the detection of the Colr, Colh, and ND phases for the cyclic trimer. While self-assembling into the Colh and Colr phases, hexagonal macrocyclic compounds display more conventional liquid crystallinity.

The optoelectronic characteristics of triangular compounds were investigated by Luo et al. (21). Triangular compounds are an ideal material for creating photoelectric switches since they can not only produce N/A-type photocurrent but also have an on/off ratio of 103. Kato et al. reported shape-stable macrocyclic compounds with phenanthrenes in the corners of triangles, tetraalkoxy-phenanthrene-mixed dehydro(n)rotaxenes (or quadrilaterals) (22). While the comparable antiaromatic rotaxenes lack any discernible fluorescence features, some rotaxenes are luminous.

Discotic Liquid Crystals with Alkynyl Functional Groups

Liquid Crystals with a Discotic Phenylene Structure

Triphenylene discoid molecules are among the most studied discotic liquid crystal materials because of their advantages of simple synthesis and processing and low melting point. A hard planar triphenylene core and many flexible chains surround the rigid core in such liquid crystal molecules. This triphenylene molecule exhibits enhanced charge and exciton transport capabilities along the direction of the column axis and is easily converted into a columnar liquid crystal phase. The main application-related issues for discotic liquid crystal materials to be resolved are extending the temperature range of the liquid crystal phase and decreasing the melting point, which may be primarily accomplished by altering the molecular structure.

To explore the effect of structural elements on the development, nature, and stability of discotic triphenylene mesophases, Andrew et al. synthesized several polysubstituted triphenylenes with a combination of alkynes and alkoxy groups (23). Their findings demonstrated that when triphenylene contains two alkynes, the columnar mesophase activity can really be improved; but, when four or six alkynes are present, the mesophase behavior is completely inhibited.

Hexabromotriphenylene was used by Wang and cowork-
ers to create a series of six symmetrically substituted triphenylene derivatives (24). In addition to extending the range of triphenylenes’ long-type conjugation, six symmetrical substituents can also improve the compounds’ solubility. It is shown that the various substituents of the discoid molecules affect the electronic properties and mesophases by contrasting their properties and examining the relationship between the structural properties. It is demonstrated that the extended conjugation length affects the triphenylene derivatives by comparing the absorption and photoluminescence spectra of these pure compounds, and the photoluminescence spectra of the absorption wavelengths show a significant increase with increasing conjugation length. According to the electrochemical characteristics of these compounds, HTP3 and HTP4 have lower LUMO levels than HTP1 and HTP2, which may be a result of the phenyl group’s addition, which lengthens the conjugation and increases the electron delocalization.

In order to investigate the effects of flexible chains on the phase state, phase transition temperature, and phase stability, Zhao et al. created flexible chains containing unsaturated groups around triphenylene (25). Their findings showed that the target compounds all exhibit an ordered hexagonal-columnar mesogenic phase. The terminal alkynyl chain compound series has the highest melting point, while the terminal alkenyl flexible chain compound series has a lower melting point than the terminal alkynyl flexible chain compound series. The highest clearing point and largest mesogenic temperature range were found in the vinylxy flexible chain compound series, and the clearing point rose noticeably as the number of unsaturated ether chains increases.

Although hexa(phenylethynyl)triphenylene’s self-organized ND phase is uncommon in discotic liquid crystals, its broad bandgap energy precludes its use in organic electronics. The triphenylene derivative not only displayed an ND phase but also relatively low bandgap energy of 2.53 eV when a thiophene unit was added at the periphery via a Suzuki–Miyaura and Sonogashira cross-coupling process to offset this effect.

Discotic Hexabenzonelike Liquid Crystals

Hexabenzocoronene (HBC) is a macrocyclic aromatic molecule with a diameter of 0.15 nm that is made up of 42 carbon atoms bound together by covalent bonds. By employing a transition metal-catalyzed cyclization technique to create HBC derivatives with chiral and racemic groups, Fehrenklatter et al. discovered that the compounds’ solubility and processing characteristics were enhanced and that their crystal phase changed to a columnar phase (26). At temperatures below room temperature, the compound can enter the columnar phase area; however, the clearing threshold is not reached until 400 °C. While the structurally related p-dodecylnaphthylacetylene substituted HBC showed corresponding phase transitions at 15 °C and 80 °C, it was clear that the addition of the connecting arm, the ethynyl group, had an impact on the compound’s phase transition temperature.

Hexa-hexabenzyopyridine/perylenediimide dimers with covalent bonds were created by Dössel et al. as a fundamental model for checking energy and electron transfer procedures (27). While unstable, compounds made of columnar polymers can display photoluminescence. For the purpose of preventing direct charge recombination, the connecting section of the dyad is not conjugated. Because there is no electron contact between the donor and acceptor, this type of star-shaped doublet transports holes and electrons along the column-oriented channel, potentially as a result of coxial line acting on the crystal field effect.

Liquid Crystal Made of Perylene Diimide

The majority of perylene imide compounds are soluble in typical organic solvents due to the fused-ring conjugated system and molecular planarity of perylene imide compounds, which improve the interaction of massive bonds between molecules and raise the lattice energy. Such compounds can be given various functional groups to increase their solubility. The Sonogashira coupling process has been used to create perylene imide (PBI) derivatives with benzylene substituents in the bay position. By identifying absorption peaks and distinct electronic vibrational processes, the manufactured doublet exhibits a distinct red shift. Effective charge transfer from electron-rich substituents to electron-deficient PBI nuclei is made possible by these substituents. The PBI ethynil (dimethylaminophenyl) substituent exhibits a significant donating property, according to the spectrum characteristics.

Discotic Liquid Crystals That Resemble Porphyrins

By using a “click” reaction, symmetric octa(thioalkane) nitrogen-containing porphyrins terminated by azide or acetylene groups, respectively, can be cross-linked into Langmuir membranes, according to Belviso et al. (28) and Kayal et al. (29). Or the COOH phase was created by thermally activating the azide-alkyne cycloaddition. Surprisingly, crosslinking had minimal impact on the mesophase.

Discotic Liquid Crystal Dimer

Two stiff mesogens that are either the same or distinct are joined by bridges make up a liquid crystal dimer. Compared to conventional small-molecule liquid crystals, it has unusual physical characteristics. The discotic state is improved by the compound’s abundance of mesogenic phase states as well as some liquid crystal dimer compounds’ polymer features, such as glass transition during phase transition. The usefulness of organic semiconductor materials like liquid crystals. As an alternative to changing the flexible chains around the triphenylene mesogens to produce stable columnar phases, bridge chains are used to join the two triphenylene molecular mesogens, giving rise to triphenylene dimer compounds.

By the Pd-catalyzed self-coupling reaction of terminal alkynes, Zhao and coworkers (30) generated diphenylbutadiyne bridged triphenylene discotic liquid crystal dimers and a series of functionalized discotic liquid crystal monomers. According to their results of the thermogravimetric analysis (TGA), it has good thermal stability and starts to break down at around 370 °C. All monomer and dimer compounds were discovered using polarized light microscopy and differential scanning calorimetry to be columnar phase liquid crystals that were in liquid crystal phase at room temperature. The molecule also possesses very stable columnar packing, high-definition brilliant spots, and a
broad mesogenic phase range. It is proven that joining two
discotic mesogens with a semi-rigid bridge chain can stabilize
the columnar phase to some extent. A comparison of the litera-
ture reveals that the central bridge chain’s rigidity has a signifi-
cant impact on the triphenylene discoid liquid crystal dimer’s
mesogenicity and that the rigidity of the central bridge chain of
diphenylbutadiyne is advantageous for the molecules’ orderly
stacking.

Through the Sonogashira coupling and cyclization pro-
dure, Zhao et al. also created a (D-A-D) trimers using
triphenylene as the electron donor and perylene diimide as the
electron acceptor (31). Due to effective molecular autonomous
ordering, all trimers self-assemble to create layered columnar
tilting phases that can give rise to highly separated do-
or-acceptor (D-A) heterojunction structures. By stacking
hexabenzophthalimide to create an electron transport channel
and using electron-rich striphenylene as a hole transient pathway,
a so-called p-n heterojunction is constructed and proven for the
first time at the molecular level.

Polymer Liquid Crystal

A polymer liquid crystal is a polymer created by joining
mesogens together chemically. It combines the benefits of pol-

er-mobility and liquid crystal’s optoelectronic capabilities.
Due to their functional side chains, monosubstituted side-chain
liquid crystal polyleethylene has numerous application possibili-
ties in the fields of electricity and optics.

By using a Rh(nbd)2Cl2/ Et3N catalyst system, Xing et al.
successfully polymerized the monomers in a solution of
tetrahydrofuran by changing the bond length of the spacer to the
main chain of polyalkyne (32). It dissolves readily in common
organic solvents due to its low molecular weight. The yield
is extremely high and can reach 84%. All polymers have very high
thermal decomposition temperatures, and when heated to 300 °C,
there is no degradation. While the polymer’s X-ray diffraction
peak is sharpest when the spacer length is a methylene group of
five carbons, corresponding to the development of mixed col-

cular liquid crystals, the tailed triphenylene having four car-
bons exhibits a hexagonal columnar phase. It has been dis-
covered that the packing of mesogens and the structure of
triphenylene polymers are both significantly influenced by the
length of the alkyl chain.

Conclusion

This paper mainly introduces the remarkable changes in the
mesogenicity and semiconducting properties of discotic liquid
crystal molecules of polyalkyne-based discotic liquid crystal
polymers, as well as the significant changes in the mesogenicity
and semiconducting properties of discotic liquid crystals con-
taining alkyln structures and various central cores and dimers
after the modification of alkyln groups. Although thousands of
compounds have been published and more than four decades
have passed since the discovery of discotic liquid crystals, the
study of discotic liquid crystals containing alkyln groups is still
in its infancy. How to increase the order degree of the discotic
liquid crystal’s columnar phase and how to enhance its
film-forming properties are now the two primary issues in the
field of discotic liquid crystal materials.

References

1. Chandrasekhar S, Sadashiva BK, Suresh KA. Liquid
crystals of disc-like molecules. Pramana 1977; 9(5):471-480. DOI:
https://doi.org/10.1007/BF02846252

2. Geelhaar T, Griesar K, Reckmann B. 125 Years of
liquids-crystals-a scientific revolution in the home. Angewandte Chem
Int Ed 2013; 52(34):8798-8809. DOI: https://doi.org/10.1002/anie.201301457

The TV in your pocket:development of liquid-crystal materials for the new millennium. Angewandte Chem
Int Ed 2013; 52(34):8880-8896. DOI: https://doi.org/10.1002/anie.201300903

4. Kumar S. Design concepts and synthesis of discotic

5. Bushby RJ, Boden N. Responses of discotic liquid

6. Chen SS, Li T, Zhao DH. Progress in discotic liquid

7. Monika G, Santanu K P. Triphenylene-based
room-temperature discotic liquid crystals: Aa new class of blue-light-emitting materials with long-range
columnar self-assembly. Langmuir 2016; 32(4):1120-1126. DOI:
https://doi.org/10.1021/acs.langmuir.5b03353

8. Yu ZQ, Lam JWY, Zhao KQ, Zhu CZ, Yang S, Lin JS,
Li BS, Liu JH, Chen EQ, Tang BZ. Mesogen jacketed
liquid crystalline polyacetylene containing triphenylene discogen:synthesis and phase structure. Polymer Chem 2013; 4(4):996-1005. DOI:
https://doi.org/10.1039/C2PY20535A

9. Rego JA, Kumar S, Ringsdorf H. Synthesis and
characterization of fluorescent, low-symmetry triphenylene discotic liquid crystals: Tailoring of
mesomorphic and optical properties. Chem Mat 1996; 8(7):1402-1409. DOI:
https://doi.org/10.1021/cm950582x

10. Axenov KV, Laschat S. Thermotropic ionic liquid
https://doi.org/10.3390/ma4010206

11. Kumar S, Varshney SK, Chauhan D. A
room-temperature discotic nematic liquid crystal. Mol Cryst Liq Cryst 2003; 396(1):241-250. DOI: https://doi.org/10.1080/15421400390213573

