Oncolytic Virus: A Promising Immunotherapy to Treat Tumors
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Published
Feb 28, 2023
Abstract
Oncolytic viruses are a type of virus that infects and kills tumor cells more than other cells. They act as “immune modification platforms” that express immune checkpoint inhibitors, tumor antigens, cytokines, and T cell engagers. They can be engineered or tested to selectively multiply and kill cancer cells. Targeting strategies include deleting the gene for the virulence factor and using abnormal signaling pathways in cancer cells to stop them from multiplying and becoming lethal.
##plugins.themes.bootstrap3.article.details##
Keywords
Oncolytic Virus, Immune Responses, Therapeutic Targets, Tumor Immune
References
1. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: A new class of immunotherapy drugs. Nat Rev Drug Discov 2015; 14(9):642-662. DOI: https://doi.org/10.1038/nrd4663. Erratum in: Nat Rev Drug Discov. 2016; 15(9):660.
2. Jhawar SR, Thandoni A, Bommareddy PK, Hassan S, Kohlhapp FJ, Goyal S, Schenkel JM, Silk AW, Zloza A. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol 2017; 7:202. DOI: https://doi.org/10.3389/fonc.2017.00202
3. Davola ME, Mossman KL. Oncolytic viruses: How "lytic" must they be for therapeutic efficacy? Oncoimmunology 2019; 8(6):e1581528. DOI: https://doi.org/10.1080/2162402X.2019.1596006
4. Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7(1):117. DOI: https://doi.org/10.1038/s41392-022-00951-x
5. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res 2014; 2(4):295-300. DOI: https://doi.org/10.1158/2326-6066.CIR-14-0015. Erratum in: Cancer Immunol Res 2014; 2(7):699.
6. Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: Barriers and recent advances. Mol Ther Oncolytics. 2019; 15:234-247. DOI: https://doi.org/10.1016/j.omto.2019.10.007
7. Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol 2021; 10(5):229-255. DOI: https://doi.org/10.5501/wjv.v10.i5.229
8. Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 2016; 99:141-149. DOI: https://doi.org/10.1016/j.critrevonc.2015.12.005
9. Budhwani M, Mazzieri R, Dolcetti R. Plasticity of type I interferon-mediated responses in cancer therapy: From anti-tumor immunity to resistance. Front Oncol 2018; 8:322. DOI: https://doi.org/10.3389/fonc.2018.00322
10. Felt SA, Grdzelishvili VZ. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: A 5-year update. J Gen Virol 2017; 98(12):2895-2911. DOI: https://doi.org/10.1099/jgv.0.000980
11. Le Boeuf F, Selman M, Son HH, Bergeron A, Chen A, Tsang J, Butterwick D, Arulanandam R, Forbes NE, Tzelepis F, Bell JC, Werier J, Abdelbary H, Diallo JS. Oncolytic Maraba virus MG1 as a treatment for sarcoma. Int J Cancer 2017; 141(6):1257-1264. DOI: https://doi.org/10.1002/ijc.30813
12. Bommareddy PK, Patel A, Hossain S, Kaufman HL. Talimogene Laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol 2017; 18(1):1-15. DOI: https://doi.org/10.1007/s40257-016-0238-9
13. Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, Yim HJ, Byun KS, Baron A, Ungerechts G, Jonker D, Ruo L, Cho M, Kaubisch A, Wege H, Merle P, Ebert O, Habersetzer F, Blanc JF, Rosmorduc O, Lencioni R, Patt R, Leen AM, Foerster F, Homerin M, Stojkowitz N, Lusky M, Limacher JM, Hennequi M, Gaspar N, McFadden B, De Silva N, Shen D, Pelusio A, Kirn DH, Breitbach CJ, Burke JM. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: A randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology 2019; 8(8):1615817. DOI: https://doi.org/10.1080/2162402X.2019.1615817
14. Scher G, Schnell MJ. Rhabdoviruses as vectors for vaccines and therapeutics. Curr Opin Virol 2020; 44:169-182. DOI: https://doi.org/10.1016/j.coviro.2020.09.003
15. Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7(1):117. DOI: https://doi.org/10.1038/s41392-022-00951-x
16. Bandola-Simon J, Roche PA. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol 2019; 113:31-37. DOI: https://doi.org/10.1016/j.molimm.2018.03.025
17. Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, He Y, Guo ZS. Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 2013; 12(1):103. DOI: https://doi.org/10.1186/1476-4598-12-103
18. Murira A, Lamarre A. Type-I interferon responses: From friend to foe in the battle against chronic viral infection. Front Immunol 2016; 7:609. DOI: https://doi.org/10.3389/fimmu.2016.00609
19. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz HJ. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev 2018; 63:40-47. DOI: https://doi.org/10.1016/j.ctrv.2017.11.007
20. Cao Y, Jiao N, Sun T, Ma Y, Zhang X, Chen H, Hong J, Zhang Y. CXCL11 Correlates with antitumor immunity and an improved prognosis in colon cancer. Front Cell Dev Biol 2021; 9:646252. DOI: https://doi.org/10.3389/fcell.2021.646252
21. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, Kirkwood JM, Gajewski TF, Chen L, Gorski KS, Anderson AA, Diede SJ, Lassman ME, Gansert J, Hodi FS, Long GV. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017; 170(6):1109-1119.e10. DOI: https://doi.org/10.1016/j.cell.2017.08.027. Erratum in: Cell 2018; 174(4):1031-1032.
22. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol 2012; 30(7):658-670. DOI: https://doi.org/10.1038/nbt.2287
23. Zhang B, Wang X, Cheng P. Remodeling of tumor immune microenvironment by oncolytic viruses. Front Oncol 2021; 10:561372. DOI: https://doi.org/10.3389/fonc.2020.561372
24. Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-catenin pathway in colorectal cancer. Cells 2020; 9(9):2125. DOI: https://doi.org/10.3390/cells9092125
25. Masucci MT, Minopoli M, Carriero MV. Tumor associated neutrophils. their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol 2019; 9:1146. DOI: https://doi.org/10.3389/fonc.2019.01146
26. Everts A, Bergeman M, McFadden G, Kemp V. Simultaneous tumor and stroma targeting by oncolytic viruses. Biomedicines 2020; 8(11):474. DOI: https://doi.org/10.3390/biomedicines8110474
27. Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021; 6(1):362. DOI: https://doi.org/10.1038/s41392-021-00670-9
28. Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J Clin Invest 2015; 125(9):3356-64. DOI: https://doi.org/10.1172/JCI80005
29. Basu A, Ramamoorthi G, Albert G, Gallen C, Beyer A, Snyder C, Koski G, Disis ML, Czerniecki BJ, Kodumudi K. Differentiation and regulation of TH cells: A balancing act for cancer immunotherapy. Front Immunol. 2021; 12:669474. DOI: https://doi.org/10.3389/fimmu.2021.669474
30. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer 2021; 20(1):131. DOI: https://doi.org/10.1186/s12943-021-01428-1
31. Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J. Immune conversion of tumor microenvironment by oncolytic viruses: The protoparvovirus H-1PV case study. Front Immunol 2019; 10:1848. DOI: https://doi.org/10.3389/fimmu.2019.01848
32. Cai H, Liu G, Zhong J, Zheng K, Xiao H, Li C, Song X, Li Y, Xu C, Wu H, He Z, Zhu Q. Immune checkpoints in viral infections. Viruses 2020; 12(9):1051. DOI: https://doi.org/10.3390/v12091051
33. Baxevanis CN. Immune checkpoint inhibitors in cancer therapy-How can we improve clinical benefits? Cancers (Basel) 2023; 15(3):881. DOI: https://doi.org/10.3390/cancers15030881
34. Grasso CS, Tsoi J, Onyshchenko M, Abril-Rodriguez G, Ross-Macdonald P, Wind-Rotolo M, Champhekar A, Medina E, Torrejon DY, Shin DS, Tran P, Kim YJ, Puig-Saus C, Campbell K, Vega-Crespo A, Quist M, Martignier C, Luke JJ, Wolchok JD, Johnson DB, Chmielowski B, Hodi FS, Bhatia S, Sharfman W, Urba WJ, Slingluff CL Jr, Diab A, Haanen JBAG, Algarra SM, Pardoll DM, Anagnostou V, Topalian SL, Velculescu VE, Speiser DE, Kalbasi A, Ribas A. Conserved Interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell 2020; 38(4):500-515.e3. DOI: https://doi.org/10.1016/j.ccell.2020.08.005. Erratum in: Cancer Cell 2021; 39(1):122.
35. Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM, Williams IP, Cheung A, Thair B, Beales CT, Touizer E, Signell AW, Tasnova NL, Spicer JF, Josephs DH, Geh JL, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN. Combining immune checkpoint inhibitors: Established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol 2019; 10:453. DOI: https://doi.org/10.3389/fimmu.2019.00453
36. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 2019; 18(1):10. DOI: https://doi.org/10.1186/s12943-018-0928-4
37. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC Class I antigen presentation. Front Immunol 2021; 12:636568. DOI: https://doi.org/10.3389/fimmu.2021.636568
38. D'Amico S, Tempora P, Melaiu O, Lucarini V, Cifaldi L, Locatelli F, Fruci D. Targeting the antigen processing and presentation pathway to overcome resistance to immune checkpoint therapy. Front Immunol 2022; 13:948297. DOI: https://doi.org/10.3389/fimmu.2022.948297
39. Cornel AM, Mimpen IL, Nierkens S. MHC Class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers (Basel) 2020; 12(7):1760. DOI: https://doi.org/10.3390/cancers12071760
40. Gujar SA, Lee PW. Oncolytic virus-mediated reversal of impaired tumor antigen presentation. Front Oncol 2014; 4:77. DOI: https://doi.org/10.3389/fonc.2014.00077
41. Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front Immunol 2020; 10:3038. DOI: https://doi.org/10.3389/fimmu.2019.03038
2. Jhawar SR, Thandoni A, Bommareddy PK, Hassan S, Kohlhapp FJ, Goyal S, Schenkel JM, Silk AW, Zloza A. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol 2017; 7:202. DOI: https://doi.org/10.3389/fonc.2017.00202
3. Davola ME, Mossman KL. Oncolytic viruses: How "lytic" must they be for therapeutic efficacy? Oncoimmunology 2019; 8(6):e1581528. DOI: https://doi.org/10.1080/2162402X.2019.1596006
4. Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7(1):117. DOI: https://doi.org/10.1038/s41392-022-00951-x
5. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res 2014; 2(4):295-300. DOI: https://doi.org/10.1158/2326-6066.CIR-14-0015. Erratum in: Cancer Immunol Res 2014; 2(7):699.
6. Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: Barriers and recent advances. Mol Ther Oncolytics. 2019; 15:234-247. DOI: https://doi.org/10.1016/j.omto.2019.10.007
7. Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol 2021; 10(5):229-255. DOI: https://doi.org/10.5501/wjv.v10.i5.229
8. Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 2016; 99:141-149. DOI: https://doi.org/10.1016/j.critrevonc.2015.12.005
9. Budhwani M, Mazzieri R, Dolcetti R. Plasticity of type I interferon-mediated responses in cancer therapy: From anti-tumor immunity to resistance. Front Oncol 2018; 8:322. DOI: https://doi.org/10.3389/fonc.2018.00322
10. Felt SA, Grdzelishvili VZ. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: A 5-year update. J Gen Virol 2017; 98(12):2895-2911. DOI: https://doi.org/10.1099/jgv.0.000980
11. Le Boeuf F, Selman M, Son HH, Bergeron A, Chen A, Tsang J, Butterwick D, Arulanandam R, Forbes NE, Tzelepis F, Bell JC, Werier J, Abdelbary H, Diallo JS. Oncolytic Maraba virus MG1 as a treatment for sarcoma. Int J Cancer 2017; 141(6):1257-1264. DOI: https://doi.org/10.1002/ijc.30813
12. Bommareddy PK, Patel A, Hossain S, Kaufman HL. Talimogene Laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol 2017; 18(1):1-15. DOI: https://doi.org/10.1007/s40257-016-0238-9
13. Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, Yim HJ, Byun KS, Baron A, Ungerechts G, Jonker D, Ruo L, Cho M, Kaubisch A, Wege H, Merle P, Ebert O, Habersetzer F, Blanc JF, Rosmorduc O, Lencioni R, Patt R, Leen AM, Foerster F, Homerin M, Stojkowitz N, Lusky M, Limacher JM, Hennequi M, Gaspar N, McFadden B, De Silva N, Shen D, Pelusio A, Kirn DH, Breitbach CJ, Burke JM. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: A randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology 2019; 8(8):1615817. DOI: https://doi.org/10.1080/2162402X.2019.1615817
14. Scher G, Schnell MJ. Rhabdoviruses as vectors for vaccines and therapeutics. Curr Opin Virol 2020; 44:169-182. DOI: https://doi.org/10.1016/j.coviro.2020.09.003
15. Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7(1):117. DOI: https://doi.org/10.1038/s41392-022-00951-x
16. Bandola-Simon J, Roche PA. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol 2019; 113:31-37. DOI: https://doi.org/10.1016/j.molimm.2018.03.025
17. Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, He Y, Guo ZS. Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 2013; 12(1):103. DOI: https://doi.org/10.1186/1476-4598-12-103
18. Murira A, Lamarre A. Type-I interferon responses: From friend to foe in the battle against chronic viral infection. Front Immunol 2016; 7:609. DOI: https://doi.org/10.3389/fimmu.2016.00609
19. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz HJ. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev 2018; 63:40-47. DOI: https://doi.org/10.1016/j.ctrv.2017.11.007
20. Cao Y, Jiao N, Sun T, Ma Y, Zhang X, Chen H, Hong J, Zhang Y. CXCL11 Correlates with antitumor immunity and an improved prognosis in colon cancer. Front Cell Dev Biol 2021; 9:646252. DOI: https://doi.org/10.3389/fcell.2021.646252
21. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, Kirkwood JM, Gajewski TF, Chen L, Gorski KS, Anderson AA, Diede SJ, Lassman ME, Gansert J, Hodi FS, Long GV. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017; 170(6):1109-1119.e10. DOI: https://doi.org/10.1016/j.cell.2017.08.027. Erratum in: Cell 2018; 174(4):1031-1032.
22. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol 2012; 30(7):658-670. DOI: https://doi.org/10.1038/nbt.2287
23. Zhang B, Wang X, Cheng P. Remodeling of tumor immune microenvironment by oncolytic viruses. Front Oncol 2021; 10:561372. DOI: https://doi.org/10.3389/fonc.2020.561372
24. Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-catenin pathway in colorectal cancer. Cells 2020; 9(9):2125. DOI: https://doi.org/10.3390/cells9092125
25. Masucci MT, Minopoli M, Carriero MV. Tumor associated neutrophils. their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol 2019; 9:1146. DOI: https://doi.org/10.3389/fonc.2019.01146
26. Everts A, Bergeman M, McFadden G, Kemp V. Simultaneous tumor and stroma targeting by oncolytic viruses. Biomedicines 2020; 8(11):474. DOI: https://doi.org/10.3390/biomedicines8110474
27. Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021; 6(1):362. DOI: https://doi.org/10.1038/s41392-021-00670-9
28. Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J Clin Invest 2015; 125(9):3356-64. DOI: https://doi.org/10.1172/JCI80005
29. Basu A, Ramamoorthi G, Albert G, Gallen C, Beyer A, Snyder C, Koski G, Disis ML, Czerniecki BJ, Kodumudi K. Differentiation and regulation of TH cells: A balancing act for cancer immunotherapy. Front Immunol. 2021; 12:669474. DOI: https://doi.org/10.3389/fimmu.2021.669474
30. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer 2021; 20(1):131. DOI: https://doi.org/10.1186/s12943-021-01428-1
31. Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J. Immune conversion of tumor microenvironment by oncolytic viruses: The protoparvovirus H-1PV case study. Front Immunol 2019; 10:1848. DOI: https://doi.org/10.3389/fimmu.2019.01848
32. Cai H, Liu G, Zhong J, Zheng K, Xiao H, Li C, Song X, Li Y, Xu C, Wu H, He Z, Zhu Q. Immune checkpoints in viral infections. Viruses 2020; 12(9):1051. DOI: https://doi.org/10.3390/v12091051
33. Baxevanis CN. Immune checkpoint inhibitors in cancer therapy-How can we improve clinical benefits? Cancers (Basel) 2023; 15(3):881. DOI: https://doi.org/10.3390/cancers15030881
34. Grasso CS, Tsoi J, Onyshchenko M, Abril-Rodriguez G, Ross-Macdonald P, Wind-Rotolo M, Champhekar A, Medina E, Torrejon DY, Shin DS, Tran P, Kim YJ, Puig-Saus C, Campbell K, Vega-Crespo A, Quist M, Martignier C, Luke JJ, Wolchok JD, Johnson DB, Chmielowski B, Hodi FS, Bhatia S, Sharfman W, Urba WJ, Slingluff CL Jr, Diab A, Haanen JBAG, Algarra SM, Pardoll DM, Anagnostou V, Topalian SL, Velculescu VE, Speiser DE, Kalbasi A, Ribas A. Conserved Interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell 2020; 38(4):500-515.e3. DOI: https://doi.org/10.1016/j.ccell.2020.08.005. Erratum in: Cancer Cell 2021; 39(1):122.
35. Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM, Williams IP, Cheung A, Thair B, Beales CT, Touizer E, Signell AW, Tasnova NL, Spicer JF, Josephs DH, Geh JL, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN. Combining immune checkpoint inhibitors: Established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol 2019; 10:453. DOI: https://doi.org/10.3389/fimmu.2019.00453
36. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 2019; 18(1):10. DOI: https://doi.org/10.1186/s12943-018-0928-4
37. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC Class I antigen presentation. Front Immunol 2021; 12:636568. DOI: https://doi.org/10.3389/fimmu.2021.636568
38. D'Amico S, Tempora P, Melaiu O, Lucarini V, Cifaldi L, Locatelli F, Fruci D. Targeting the antigen processing and presentation pathway to overcome resistance to immune checkpoint therapy. Front Immunol 2022; 13:948297. DOI: https://doi.org/10.3389/fimmu.2022.948297
39. Cornel AM, Mimpen IL, Nierkens S. MHC Class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers (Basel) 2020; 12(7):1760. DOI: https://doi.org/10.3390/cancers12071760
40. Gujar SA, Lee PW. Oncolytic virus-mediated reversal of impaired tumor antigen presentation. Front Oncol 2014; 4:77. DOI: https://doi.org/10.3389/fonc.2014.00077
41. Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front Immunol 2020; 10:3038. DOI: https://doi.org/10.3389/fimmu.2019.03038
How to Cite
Rosen, A. (2023). Oncolytic Virus: A Promising Immunotherapy to Treat Tumors. Science Insights, 42(2), 801–805. https://doi.org/10.15354/si.23.ps021
Issue
Section
Perspective
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.