Comparison of Neural Circuitry Mechanisms between Internet Game Addiction and Heroin Addiction
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Internet game addiction and heroin addiction have many similar clinical manifestations, but whether they share similar neural mechanisms is yet clearly known. Based on MRI data, it was found that the two types of addictions have some damages in the same brain structure and function, and the four addiction-related circuits as cognitive control loop, reward prediction and pleasure loop, motivation drive and salience attribution loop, and learning and memory loop showed widespread and enhanced activation. However, the brain damage area of heroin addiction is biased towards the higher cognitive control circuit and reward circuit, and the scope of damage is wider showing the functional connectivity of the four circuits is reduced, while the brain damage of internet game addiction mainly occurs in relatively low-level memory-learning circuits and motivation circuits, and the scope of damage is also relatively narrow by indicating decreased functional connectivity only occurs between cognitive control and memory-learning circuits. This indicates that the neural mechanisms underlying the two types of addictive behaviors have both similarities and differences. This review compares above-mentioned four circuitry mechanisms between internet game addiction and heroin addiction to highlight the underlying neural similarities between them and provide insights into potential interventional strategies.
##plugins.themes.bootstrap3.article.details##
Addiction, Internet Game, Heroin, Neural Mechanisms, Addiction Circuits
2. Sussman CJ, Harper JM, Stahl JL, Weigle P. Internet and video game addictions: Diagnosis, epidemiology, and neurobiology. Child Adolesc Psychiatr Clin N Am 2018; 27(2):307-326. DOI: https://doi.org/10.1016/j.chc.2017.11.015
3. Alavi SS, Ferdosi M, Jannatifard F, Eslami M, Alaghemandan H, Setare M. Behavioral addiction versus substance addiction: Correspondence of psychiatric and psychological views. Int J Prev Med 2012; 3(4):290-294.
4. Alavi SS, Maracy MR, Jannatifard F, Eslami M. The effect of psychiatric symptoms on the internet addiction disorder in Isfahan’s University students. J Res Med Sci 2011; 16(6):793-800.
5. Kuss DJ, Lopez-Fernandez O. Internet addiction and problematic Internet use: A systematic review of clinical research. World J Psychiatry 2016; 6(1):143-176. DOI: https://doi.org/10.5498/wjp.v6.i1.143
6. Petry NM, Zajac K, Ginley MK. Behavioral addictions as mental disorders: To be or not to be? Annu Rev Clin Psychol 2018; 14:399-423. DOI: https://doi.org/10.1146/annurev-clinpsy-032816-045120
7. Yau YH, Crowley MJ, Mayes LC, Potenza MN. Are Internet use and video-game-playing addictive behaviors? Biological, clinical and public health implications for youths and adults. Minerva Psichiatr 2012; 53(3):153-170.
8. Estévez A, Jáuregui P, Sánchez-Marcos I, López-González H, Griffiths MD. Attachment and emotion regulation in substance addictions and behavioral addictions. J Behav Addict 2017; 6(4):534-544. DOI: https://doi.org/10.1556/2006.6.2017.086
9. Koob GF, Volkow ND. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016; 3(8):760-773. DOI: https://doi.org/10.1016/S2215-0366(16)00104-8
10. Love T, Laier C, Brand M, Hatch L, Hajela R. Neuroscience of internet pornography addiction: A review and update. Behav Sci (Basel) 2015; 5(3):388-433. DOI: https://doi.org/10.3390/bs5030388
11. Tiffany ST, Wray JM. The clinical significance of drug craving. Ann N Y Acad Sci 2012; 1248:1-17. DOI: https://doi.org/10.1111/j.1749-6632.2011.06298.x
12. Substance Abuse and Mental Health Services Administration (US); Office of the Surgeon General (US). Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health [Internet]. Washington (DC): US Department of Health and Human Services; 2016 Nov. Chapter 2, The neurobiology of substance use, misuse, and addiction. Available at: https://www.ncbi.nlm.nih.gov/books/NBK424849/
13. Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N Engl J Med 2016; 374(4):363-371. DOI: https://doi.org/10.1056/NEJMra1511480
14. Månsson V, Andrade J, Jayaram-Lindström N, Berman AH. “I see myself”: Craving imagery among individuals with addictive disorders. J Addict Dis 2023; 41(1):64-77. DOI: https://doi.org/10.1080/10550887.2022.2058299
15. NIDA. Drugs and the Brain. National Institute on Drug Abuse website. March 22, 2022. Last Access: March 07, 2023. Available at: https://nida.nih.gov/publications/drugs-brains-behavior-science-addiction/drugs-brain
16. Li Q, Wang Y, Zhang Y, Li W, Zhu J, Zheng Y, Chen J, Zhao L, Zhou Z, Liu Y, Wang W, Tian J. Assessing cue-induced brain response as a function of abstinence duration in heroin-dependent individuals: An event-related fMRI study. PLoS One 2013; 8(5):e62911. DOI: https://doi.org/10.1371/journal.pone.0062911
17. Wei X, Li Q, Chen J, Shen B, Wang W, Li W. Differences in cue-induced brain activation between long-term methadone maintenance treatment and protracted abstinence in heroin use disorder patients: A functional magnetic resonance imaging study. Quant Imaging Med Surg 2021; 11(5):2104-2113. DOI: https://doi.org/10.21037/qims-20-1002
18. Liu GC, Yen JY, Chen CY, Yen CF, Chen CS, Lin WC, Ko CH. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. Kaohsiung J Med Sci 2014; 30(1):43-51. DOI: https://doi.org/10.1016/j.kjms.2013.08.005
19. Sun Y, Sun J, Zhou Y, Ding W, Chen X, Zhuang Z, Xu J, Du Y. Assessment of in vivo microstructure alterations in gray matter using DKI in Internet gaming addiction. Behav Brain Funct 2014; 10:37. DOI: https://doi.org/10.1186/1744-9081-10-37
20. Anderson BA. What is abnormal about addiction-related attentional biases? Drug Alcohol Depend 2016; 167:8-14. DOI: https://doi.org/10.1016/j.drugalcdep.2016.08.002
21. Wiehler A, Peters J. Reward-based decision making in pathological gambling: the roles of risk and delay. Neurosci Res 2015; 90:3-14. DOI: https://doi.org/10.1016/j.neures.2014.09.008
22. Gorzelańczyk EJ, Walecki P, Błaszczyszyn M, Laskowska E, Kawala-Sterniuk A. Evaluation of risk behavior in gambling addicted and opioid addicted individuals. Front Neurosci 2021; 14:597524. DOI: https://doi.org/10.3389/fnins.2020.597524
23. Goudriaan AE, Yücel M, van Holst RJ. Getting a grip on problem gambling: What can neuroscience tell us? Front Behav Neurosci 2014; 8:141. DOI: https://doi.org/10.3389/fnbeh.2014.00141
24. Schmidt A, Walter M, Gerber H, Schmid O, Smieskova R, Bendfeldt K, Wiesbeck GA, Riecher-Rössler A, Lang UE, Rubia K, McGuire P, Borgwardt S. Inferior frontal cortex modulation with an acute dose of heroin during cognitive control. Neuropsychopharmacology 2013; 38(11):2231-2239. DOI: https://doi.org/10.1038/npp.2013.123
25. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat Rev Neurosci 2011; 12(11):652-669. DOI: https://doi.org/10.1038/nrn3119
26. Kuss DJ, Griffiths MD. Internet and gaming addiction: A systematic literature review of neuroimaging studies. Brain Sci 2012; 2(3):347-374. DOI: https://doi.org/10.3390/brainsci2030347
27. Cho TH, Nah Y, Park SH, Han S. Prefrontal cortical activation in Internet Gaming Disorder Scale high scorers during actual real-time internet gaming: A preliminary study using fNIRS. J Behav Addict 2022; 11(2):492-505. DOI: https://doi.org/10.1556/2006.2022.00017
28. Dong G, Li H, Wang L, Potenza MN. Cognitive control and reward/loss processing in Internet gaming disorder: Results from a comparison with recreational Internet game-users. Eur Psychiatry 2017; 44:30-38. DOI: https://doi.org/10.1016/j.eurpsy.2017.03.004
29. Weinstein A, Lejoyeux M. Neurobiological mechanisms underlying internet gaming disorder. Dialogues Clin Neurosci 2020; 22(2):113-126. DOI: https://doi.org/10.31887/DCNS.2020.22.2/aweinstein
30. Dong G, Potenza MN. A cognitive-behavioral model of Internet gaming disorder: Theoretical underpinnings and clinical implications. J Psychiatr Res 2014; 58:7-11. DOI: https://doi.org/10.1016/j.jpsychires.2014.07.005
31. Denier N, Schmidt A, Gerber H, Schmid O, Riecher-Rössler A, Wiesbeck GA, Huber CG, Lang UE, Radue EW, Walter M, Borgwardt S. Association of frontal gray matter volume and cerebral perfusion in heroin addiction: A multimodal neuroimaging study. Front Psychiatry 2013; 4:135. DOI: https://doi.org/10.3389/fpsyt.2013.00135
32. Shi H, Liang Z, Chen J, Li W, Zhu J, Li Y, Ye J, Zhang J, Xue J, Liu W, Wang F, Wang W, Li Q, He X. Gray matter alteration in heroin-dependent men: An atlas-based magnetic resonance imaging study. Psychiatry Res Neuroimaging 2020; 304:111150. DOI: https://doi.org/10.1016/j.pscychresns.2020.111150
33. Stewart JL, May AC, Paulus MP. Bouncing back: Brain rehabilitation amid opioid and stimulant epidemics. Neuroimage Clin 2019; 24:102068. DOI: https://doi.org/10.1016/j.nicl.2019.102068
34. Ceceli AO, Huang Y, Kronberg G, Malaker P, Miller P, King S, Gaudreault PO, McClain N, Gabay L, Vasa D, Newcorn JH, Ekin D, Alia-Klein N, Goldstein RZ. Common and distinct fronto-striatal volumetric changes in heroin and cocaine use disorders. Brain 2022; 2022:awac366. DOI: https://doi.org/10.1093/brain/awac366
35. Gordon HW. Differential activation of the left and right cerebral hemispheres of individuals who use or are dependent on drugs of abuse. J Drug Abuse 2018; 4(2):10. DOI: https://doi.org/10.21767/2471-853X.100077
36. Motzkin JC, Baskin-Sommers A, Newman JP, Kiehl KA, Koenigs M. Neural correlates of substance abuse: Reduced functional connectivity between areas underlying reward and cognitive control. Hum Brain Mapp 2014; 35(9):4282-4292. DOI: https://doi.org/10.1002/hbm.22474
37. Schmidt A, Walter M, Gerber H, Seifritz E, Brenneisen R, Wiesbeck GA, Riecher-Rössler A, Lang UE, Borgwardt S. Normalizing effect of heroin maintenance treatment on stress-induced brain connectivity. Brain 2015; 138(Pt 1):217-228. DOI: https://doi.org/10.1093/brain/awu326
38. Lin HC, Wang PW, Wu HC, Ko CH, Yang YH, Yen CF. Altered gray matter volume and disrupted functional connectivity of dorsolateral prefrontal cortex in men with heroin dependence. Psychiatry Clin Neurosci. 2018; 72(6):435-444. DOI: https://doi.org/10.1111/pcn.12655
39. Ma N, Liu Y, Li N, Wang CX, Zhang H, Jiang XF, Xu HS, Fu XM, Hu X, Zhang DR. Addiction related alteration in resting-state brain connectivity. Neuroimage 2010; 49(1):738-744. DOI: https://doi.org/10.1016/j.neuroimage.2009.08.037
40. Wang W, Wang YR, Qin W, Yuan K, Tian J, Li Q, Yang LY, Lu L, Guo YM. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers. Chin Med J (Engl) 2010; 123(12):1582-1588.
41. Zhai TY, Shao YC, Xie CM, Ye EM, Zou F, Fu LP, Li WJ, Chen G, Chen GY, Zhang ZG, Li SJ, Yang Z. Altered intrinsic hippocmapus declarative memory network and its association with impulsivity in abstinent heroin dependent subjects. Behav Brain Res 2014; 272:209-217. DOI: https://doi.org/10.1016/j.bbr.2014.06.054
42. Lin X, Dong G, Wang Q, Du X. Abnormal gray matter and white matter volume in ‘Internet gaming addicts’. Addict Behav 2015; 40:137-143. DOI: https://doi.org/10.1016/j.addbeh.2014.09.010
43. Ko CH, Hsieh TJ, Wang PW, Lin WC, Yen CF, Chen CS, Yen JY. Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:185-192. DOI: https://doi.org/10.1016/j.pnpbp.2014.11.003
44. Brand M, Young KS, Laier C. Prefrontal control and internet addiction: A theoretical model and review of neuropsychological and neuroimaging findings. Front Hum Neurosci 2014; 8:375. DOI: https://doi.org/10.3389/fnhum.2014.00375
45. Lin F, Zhou Y, Du Y, Qin L, Zhao Z, Xu J, Lei H. Abnormal white matter integrity in adolescents with internet addiction disorder: A tract-based spatial statistics study. PLoS One 2012; 7(1):e30253. DOI: https://doi.org/10.1371/journal.pone.0030253
46. Meng Y, Deng W, Wang H, Guo W, Li T. The prefrontal dysfunction in individuals with Internet gaming disorder: A meta-analysis of functional magnetic resonance imaging studies. Addict Biol 2015; 20(4):799-808. DOI: https://doi.org/10.1111/adb.12154
47. Solly JE, Hook RW, Grant JE, Cortese S, Chamberlain SR. Structural gray matter differences in problematic usage of the internet: A systematic review and meta-analysis. Mol Psychiatry 2022; 27(2):1000-1009. DOI: https://doi.org/10.1038/s41380-021-01315-7
48. Li W, Li Y, Yang W, Zhang Q, Wei D, Li W, Hitchman G, Qiu J. Brain structures and functional connectivity associated with individual differences in Internet tendency in healthy young adults. Neuropsychologia 2015; 70:134-144. DOI: https://doi.org/10.1016/j.neuropsychologia.2015.02.019
49. Sun JT, Hu B, Chen TQ, Chen ZH, Shang YX, Li YT, Wang R, Wang W. Internet addiction-induced brain structure and function alterations: A systematic review and meta-analysis of voxel-based morphometry and resting-state functional connectivity studies. Brain Imaging Behav 2023; In press. DOI: https://doi.org/10.1007/s11682-023-00762-w
50. Chen H, Dong G, Li K. Overview on brain function enhancement of Internet addicts through exercise intervention: Based on reward-execution-decision cycle. Front Psychiatry 2023; 14:1094583. DOI: https://doi.org/10.3389/fpsyt.2023.1094583
51. Darnai G, Perlaki G, Zsidó AN, Inhóf O, Orsi G, Horváth R, Nagy SA, Lábadi B, Tényi D, Kovács N, Dóczi T, Demetrovics Z, Janszky J. Internet addiction and functional brain networks: Task-related fMRI study. Sci Rep 2019; 9(1):15777. DOI: https://doi.org/10.1038/s41598-019-52296-1
52. Sepede G, Tavino M, Santacroce R, Fiori F, Salerno RM, Di Giannantonio M. Functional magnetic resonance imaging of internet addiction in young adults. World J Radiol 2016; 8(2):210-225. DOI: https://doi.org/10.4329/wjr.v8.i2.210
53. Vassileva J, Paxton J, Moeller FG, Wilson MJ, Bozgunov K, Martin EM, Gonzalez R, Vasilev G. Heroin and amphetamine users display opposite relationships between trait and neurobehavioral dimensions of impulsivity. Addict Behav 2014; 39(3):652-659. DOI: https://doi.org/10.1016/j.addbeh.2013.11.020
54. Dousset C, Chenut C, Kajosch H, Kornreich C, Campanella S. Comparison of neural correlates of reactive inhibition in cocaine, heroin, and polydrug users through a contextual Go/No-Go task using event-related potentials. Biology (Basel) 2022; 11(7):1029. DOI: https://doi.org/10.3390/biology11071029
55. Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, Castellanos FX, Haxby JV, Noll DC, Cohen JD, Forman SD, Dahl RE, Rapoport JL. A developmental functional mri study of prefrontal activation during performance of a Go-No-Go task. J Cogn Neurosci 1997; 9(6):835-847. DOI: https://doi.org/10.1162/jocn.1997.9.6.835
56. Ko CH, Chen SH, Wang CH, Tsai WX, Yen JY. The clinical utility of the Chen Internet Addiction Scale-Gaming Version, for internet gaming disorder in the DSM-5 among young adults. Int J Environ Res Public Health 2019; 16(21):4141. DOI: https://doi.org/10.3390/ijerph16214141
57. Ding WN, Sun JH, Sun YW, Zhou Y, Li L, Xu JR, Du YS. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction. PLoS One 2013; 8(3):e59902. DOI: https://doi.org/10.1371/journal.pone.0059902
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.