##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 17, 2021

Ronnie L. Davidson  

Abstract

Mitochondria not only provide necessary energy for cells, but more importantly, they participate in the regulation of various biological functions and activities of cells. As one of the critical components of the body’s genome, mitochondrial genome (mtDNA) is the key to cell bioenergetics and genetics. However, since no protection of histones and a complete self-repair system, mtDNA is extremely prone to mutate. Human diseases caused by mtDNA mutations are only transmitted through the maternal line. The same phenotype can come from multiple mtDNA mutations, and the same mtDNA mutation can lead to multiple phenotypes. This is the major reason that makes the diagnosis and identification of mtDNA genetic diseases difficult. Meanwhile, mtDNA mutations may be the culprit involved in mediating the aging and tumorigenesis. Currently, no effective therapeutics for diseases caused by mtDNA mutations, but with the deepening of research and technological advancement, it is promising that breakthroughs in the diagnosis and treatment of mitochondrial-related diseases in the near future.

##plugins.themes.bootstrap3.article.details##

Keywords

Mitochondrial DNA, Diseases, Genetics, Mutation, Therapeutics

References
1. Evans A, Neuman N. The mighty mitochondria. Mol Cell 2016; 61(5):641. DOI: https://doi.org/10.1016/j.molcel.2016.02.002

2. Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg 2018; 1859(9):940-950. DOI: https://doi.org/10.1016/j.bbabio.2018.05.019

3. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M, Misso G. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 2020; 98:139-153. DOI: https://doi.org/10.1016/j.semcdb.2019.05.022

4. Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med 2017; 107:216-227. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.11.050

5. Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295(52):18406-18425. DOI: https://doi.org/10.1074/jbc.REV120.011202

6. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 1962; 41(9):1776-1804. DOI: https://doi.org/10.1172/JCI104637

7. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331(6158):717-719. DOI: https://doi.org/10.1038/331717a0

8. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ II, Nikoskelainen EK. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988; 242(4884):1427-1430. DOI: https://doi.org/10.1126/science.3201231

9. Singh G, Lott MT, Wallace DC. A mitochondrial DNA mutation as a cause of Leber’s hereditary optic neuropathy. N Engl J Med 1989; 320(20):1300-1305. DOI: https://doi.org/10.1056/NEJM198905183202002

10. Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: Distribution, mutations, and elimination. Cells 2019; 8(4):379. DOI: https://doi.org/10.3390/cells8040379

11. Ott M, Amunts A, Brown A. Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 2016; 85:77-101. DOI: https://doi.org/10.1146/annurev-biochem-060815-014334

12. Farge G, Falkenberg M. Organization of DNA in mammalian mitochondria. Int J Mol Sci 2019; 20(11):2770. DOI: https://doi.org/10.3390/ijms20112770

13. Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 1980; 77(11):6715-6719. DOI: https://doi.org/10.1073/pnas.77.11.6715

14. Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Engl J Med 2002; 347(8):576-580. DOI: https://doi.org/10.1056/NEJMoa020350

15. Taylor RW, McDonnell MT, Blakely EL, Chinnery PF, Taylor GA, Howell N, Zeviani M, Briem E, Carrara F, Turnbull DM. Genotypes from patients indicate no paternal mitochondrial DNA contribution. Ann Neurol 2003; 54(4):521-524. DOI: https://doi.org/10.1002/ana.10673

16. Schwartz M, Vissing J. No evidence for paternal inheritance of mtDNA in patients with sporadic mtDNA mutations. J Neurol Sci 2004; 218(1-2):99-101. DOI: https://doi.org/10.1016/j.jns.2003.11.008

17. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitin tag for sperm mitochondria. Nature 1999; 402(6760):371-372. DOI: https://doi.org/10.1038/46466

18. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 2000; 63(2):582-590. DOI: https://doi.org/10.1095/biolreprod63.2.582

19. St John J, Sakkas D, Dimitriadi K, Barnes A, Maclin V, Ramey J, Barratt C, De Jonge C. Failure of elimination of paternal mitochondrial DNA in abnormal embryos. Lancet 2000; 355(9199):200. DOI: https://doi.org/10.1016/s0140-6736(99)03842-8

20. Jeppesen TD, Schwartz M, Frederiksen AL, Wibrand F, Olsen DB, Vissing J. Muscle phenotype and mutation load in 51 persons with the 3243A>G mitochondrial DNA mutation. Arch Neurol 2006; 63(12):1701-1706. DOI: https://doi.org/10.1001/archneur.63.12.1701

21. Frederiksen AL, Andersen PH, Kyvik KO, Jeppesen TD, Vissing J, Schwartz M. Tissue specific distribution of the 3243A->G mtDNA mutation. J Med Genet 2006; 43(8):671-677. DOI: https://doi.org/10.1136/jmg.2005.039339

22. Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. Mitochondrial threshold effects. Biochem J 2003; 370(Pt 3):751-762. DOI: https://doi.org/10.1042/BJ20021594

23. Rebolledo-Jaramillo B, Su MS, Stoler N, McElhoe JA, Dickins B, Blankenberg D, Korneliussen TS, Chiaromonte F, Nielsen R, Holland MM, Paul IM, Nekrutenko A, Makova KD. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 2014; 111(43):15474-15479. DOI: https://doi.org/10.1073/pnas.1409328111

24. Shoubridge EA, Wai T. Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 2007; 77:87-111. DOI: https://doi.org/10.1016/S0070-2153(06)77004-1

25. Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi J, Yonekawa H. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 2007; 39(3):386-390. DOI: https://doi.org/10.1038/ng1970

26. Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int 2013; 2013:183024. DOI: https://doi.org/10.1155/2013/183024

27. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005; N6(5):389-402. DOI: https://doi.org/10.1038/nrg1606

28. Schon EA, DiMauro S, Hirano M. Human mitochondrial DNA: Roles of inherited and somatic mutations. Nat Rev Genet 2012; 13(12):878-890. DOI: https://doi.org/10.1038/nrg3275

29. McInnes, J. Mitochondrial-associated metabolic disorders: Foundations, pathologies and recent progress. Nutr Metab (Lond) 2013; 10:63. DOI: https://doi.org/10.1186/1743-7075-10-63

30. Kirches E. LHON: Mitochondrial mutations and more. Curr Genomics 2011; 12(1):44-54. DOI: https://doi.org/10.2174/138920211794520150

31. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol 2017; 241(2):236-250. DOI: https://doi.org/10.1002/path.4809

32. Phadke R. Myopathology of Adult and Paediatric Mitochondrial Diseases. J Clin Med 2017; 6(7):64. DOI: https://doi.org/10.3390/jcm6070064

33. Campos Y, Martin MA, Lorenzo G, Aparicio M, Cabello A, Arenas J. Sporadic MERRF/MELAS overlap syndrome associated with the 3243 tRNA(Leu(UUR)) mutation of mitochondrial DNA. Muscle Nerve 1996; 19(2):187-190. DOI: https://doi.org/10.1002/(SICI)1097-4598(199602)19:2<187::AID-MUS10>3.0.CO;2-S

34. Ruhoy IS, Saneto RP. The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet 2014; 7:221-234. DOI: https://doi.org/10.2147/TACG.S46176

35. Gao Z, Yuan YS. Screening for mitochondrial 12S rRNA C1494T mutation in 655 patients with non-syndromic hearing loss: An observational study. Medicine (Baltimore) 2020; 99(13):e19373. DOI: https://doi.org/10.1097/MD.0000000000019373

36. Jin L, Yang A, Zhu Y, Zhao J, Wang X, Yang L, Sun D, Tao Z, Tsushima A, Wu G, Xu L, Chen C, Yi B, Cai J, Tang X, Wang J, Li D, Yuan Q, Liao Z, Chen J, Li Z, Lu J, Guan MX. Mitochondrial tRNASer(UCN) gene is the hot spot for mutations associated with aminoglycoside-induced and non-syndromic hearing loss. Biochem Biophys Res Commun 2007; 361(1):133-139. DOI: https://doi.org/10.1016/j.bbrc.2007.06.171

37. van den Ouweland JM, Lemkes HH, Trembath RC, Ross R, Velho G, Cohen D, Froguel P, Maassen JA. Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNA(Leu(UUR)) gene. Diabetes 1994; 43(6):746-751. DOI: https://doi.org/10.2337/diab.43.6.746

38. Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 2013; 5(11):a021220. DOI: https://doi.org/10.1101/cshperspect.a021220

39. Chinnery PF, DiMauro S, Shanske S, Schon EA, Zeviani M, Mariotti C, Carrara F, Lombes A, Laforet P, Ogier H, Jaksch M, Lochmüller H, Horvath R, Deschauer M, Thorburn DR, Bindoff LA, Poulton J, Taylor RW, Matthews JN, Turnbull DM. Risk of developing a mitochondrial DNA deletion disorder. Lancet 2004; 364(9434):592-596. DOI: https://doi.org/10.1016/S0140-6736(04)16851-7

40. Barazzoni R, Short KR, Nair KS. Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 2000; 275(5):3343-3347. DOI: https://doi.org/10.1074/jbc.275.5.3343

41. Dölle C, Flønes I, Nido GS, Miletic H, Osuagwu N, Kristoffersen S, Lilleng PK, Larsen JP, Tysnes OB, Haugarvoll K, Bindoff LA, Tzoulis C. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun 2016; 7:13548. DOI: https://doi.org/10.1038/ncomms13548

42. Hahn A, Zuryn S. Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species. Antioxidants (Basel) 2019; 8(9):392. DOI: https://doi.org/10.3390/antiox8090392

43. Kauppila JHK, Baines HL, Bratic A, Simard ML, Freyer C, Mourier A, Stamp C, Filograna R, Larsson NG, Greaves LC, Stewart JB. A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep 2016; 16(11):2980-2990. DOI: https://doi.org/10.1016/j.celrep.2016.08.037

44. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005; 309(5733):481-84. DOI: https://doi.org/10.1126/science.1112125

45. Geurts J, Nasi S, Distel P, Müller-Gerbl M, Prolla TA, Kujoth GC, Walker UA, Hügle T. Prematurely aging mitochondrial DNA mutator mice display subchondral osteopenia and chondrocyte hypertrophy without further osteoarthritis features. Sci Rep 2020; 10(1):1296. DOI: https://doi.org/10.1038/s41598-020-58385-w

46. Theurey P, Pizzo P. The aging mitochondria. Genes (Basel) 2018; 9(1):22. DOI: https://doi.org/10.3390/genes9010022

47. Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer. Oncogene 2006;25(34):4663-4674. DOI: https://doi.org/10.1038/sj.onc.1209604

48. Luo Y, Ma J, Lu W. The significance of mitochondrial dysfunction in cancer. Int J Mol Sci 2020; 21(16):5598. DOI: https://doi.org/10.3390/ijms21165598

49. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 2005; 102(3):719-724. DOI: https://doi.org/10.1073/pnas.0408894102

50. Cruz-Bermúdez A, Vallejo CG, Vicente-Blanco RJ, Gallardo ME, Fernández-Moreno MÁ, Quintanilla M, Garesse R. Enhanced tumorigenicity by mitochondrial DNA mild mutations. Oncotarget 2015; 6(15):13628-13643. DOI: https://doi.org/10.18632/oncotarget.3698. Erratum in: Oncotarget. 2020; 11(11):1006.

51. Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, Oda H, Ohta S. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 2005; 65(5):1655-1663. DOI: https://doi.org/10.1158/0008-5472.CAN-04-2012

52. Wong LJ. Diagnostic challenges of mitochondrial DNA disorders. Mitochondrion 2007; 7(1-2):45-52. DOI: https://doi.org/10.1016/j.mito.2006.11.025

53. Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, Anselm I, Cohen BH, Falk MJ, Greene C, Gropman AL, Haas R, Hirano M, Morgan P, Sims K, Tarnopolsky M, Van Hove JL, Wolfe L, DiMauro S. Diagnosis and management of mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet Med 2015; 17(9):689-701. DOI: https://doi.org/10.1038/gim.2014.177

54. Parikh S, Karaa A, Goldstein A, Bertini ES, Chinnery PF, Christodoulou J, Cohen BH, Davis RL, Falk MJ, Fratter C, Horvath R, Koenig MK, Mancuso M, McCormack S, McCormick EM, McFarland R, Nesbitt V, Schiff M, Steele H, Stockler S, Sue C, Tarnopolsky M, Thorburn DR, Vockley J, Rahman S. Diagnosis of ‘possible’ mitochondrial disease: An existential crisis. J Med Genet 2019; 56(3):123-130. DOI: https://doi.org/10.1136/jmedgenet-2018-105800

55. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM. Mitochondrial diseases. Nat Rev Dis Primers 2016; 2:16080. DOI: https://doi.org/10.1038/nrdp.2016.80

56. Shen L, McCormick EM, Muraresku CC, Falk MJ, Gai X. Clinical bioinformatics in precise diagnosis of mitochondrial disease. Clin Lab Med 2020; 40(2):149-161. DOI: https://doi.org/10.1016/j.cll.2020.02.002

57. Wilkins HM, Carl SM, Swerdlow RH. Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-631. DOI: https://doi.org/10.1016/j.redox.2014.03.006

58. Ng YS, Turnbull DM. Mitochondrial disease: genetics and management. J Neurol 2016; 263(1):179-191. DOI: https://doi.org/10.1007/s00415-015-7884-3

59. Taylor AW, Bachman L. The effects of endurance training on muscle fibre types and enzyme activities. Can J Appl Physiol 1999; 24(1):41-53. DOI: https://doi.org/10.1139/h99-005

60. Chilibeck PD, Syrotuik DG, Bell GJ. The effect of concurrent endurance and strength training on quantitative estimates of subsarcolemmal and intermyofibrillar mitochondria. Int J Sports Med 2002; 23(1):33-9. DOI: https://doi.org/10.1055/s-2002-19269

61. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 2007; 292(3):R1271-R1278. DOI: https://doi.org/10.1152/ajpregu.00472.2006

62. Jeppesen TD, Madsen KL, Poulsen NS, Løkken N, Vissing J. Exercise testing, physical training and fatigue in patients with mitochondrial myopathy related to mtDNA mutations. J Clin Med 2021; 10(8):1796. DOI: https://doi.org/10.3390/jcm10081796

63. Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ, Haller RG, Turnbull DM. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 2006; 129(Pt 12):3391-3401. DOI: https://doi.org/10.1093/brain/awl282

64. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013; 8(21):2003-2014. DOI: https://doi.org/10.3969/j.issn.1673-5374.2013.21.009

65. Kuszak AJ, Espey MG, Falk MJ, Holmbeck MA, Manfredi G, Shadel GS, Vernon HJ, Zolkipli-Cunningham Z. Nutritional interventions for mitochondrial OXPHOS deficiencies: Mechanisms and model systems. Annu Rev Pathol 2018; 13:163-191. DOI: https://doi.org/10.1146/annurev-pathol-020117-043644

66. Elbaky NAA, El-Orabi NF, Fadda LM, Abd-Elkader OH, Ali HM. Role of N-Acetylcysteine and coenzyme Q10 in the amelioration of myocardial energy expenditure and oxidative stress, induced by carbon tetrachloride intoxication in rats. Dose Response 2018; 16(3):1559325818790158. DOI: https://doi.org/10.1177/1559325818790158

67. Kunze M, Berger J. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front Physiol 2015; 6:259. DOI: https://doi.org/10.3389/fphys.2015.00259

68. Diodato D, Ghezzi D, Tiranti V. The mitochondrial aminoacyl tRNA synthetases: Genes and syndromes. Int J Cell Biol 2014; 2014:787956. DOI: https://doi.org/10.1155/2014/787956

69. Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes 2019; 45:311-341. DOI: https://doi.org/10.1016/bs.enz.2019.08.004

70. Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, Garreau-Balandier I, Vernet P, Falkenberg M, Farge G. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 2017; 12(4):e0176795. DOI: https://doi.org/10.1371/journal.pone.0176795

71. Zekonyte U, Bacman SR, Smith J, Shoop W, Pereira CV, Tomberlin G, Stewart J, Jantz D, Moraes CT. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat Commun 2021; 12(1):3210. DOI: https://doi.org/10.1038/s41467-021-23561-7
How to Cite
Davidson, R. L. (2021). Mitochondrial Genome (mtDNA) and Human Diseases. Science Insights, 38(4), 317–325. https://doi.org/10.15354/si.21.re201
Section
Review