Cognitive Dysfunction in Hypothyroidism
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Cognitive function and hypothyroidism are strongly associated, and age-related differences in performance are significant. The association between hypothyroidism and cognitive impairment in adult patients is still debatable, although it is most severe in the fetus and neonatal period, where it is easy to leave lasting sequelae. Current theories postulate that the various age-related manifestations of this cognitive impairment may be linked to the various stages of hypothyroidism during the time-dependent development of the neurological system. Although the precise mechanism is still not entirely understood, it might be connected to immunological factors.
##plugins.themes.bootstrap3.article.details##
Hypothyroidism, Cognitive Function, Correlation, Age
2. Bernal J. Thyroid Hormones in Brain Development and Function. [Updated 2022 Jan 14]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available at: https://www.ncbi.nlm.nih.gov/books/NBK285549/
3. Srivastav A, Maisnam I, Dutta D, Ghosh S, Mukhopadhyay S, Chowdhury S. Cretinism revisited. Indian J Endocrinol Metab 2012; 16(Suppl 2):S336-S337. DOI: https://doi.org/10.4103/2230-8210.104081
4. Segni M. Disorders of the Thyroid Gland in Infancy, Childhood and Adolescence. [Updated 2017 Mar 18]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available at: https://www.ncbi.nlm.nih.gov/books/NBK279032/
5. Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 2017; 342:68-100. DOI: https://doi.org/10.1016/j.neuroscience.2015.09.070
6. Bowden SA, Goldis M. Congenital Hypothyroidism. [Updated 2022 Jun 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK558913/
7. Taheri Soodejani M, Tabatabaei SM, Shoraka HR, Fallahzadeh H, Ghaderi A. Trend of congenital hypothyroidism incidence and its affecting factors in Shahr-e-Kord, Western Iran. Iran J Public Health 2020; 49(5):989-994.
8. Smallridge RC, Ladenson PW. Hypothyroidism in pregnancy: Consequences to neonatal health. J Clin Endocrinol Metab. 2001; 86(6):2349-2353. DOI: https://doi.org/10.1210/jcem.86.6.7577
9. Tudosa R, Vartej P, Horhoianu I, Ghica C, Mateescu S, Dumitrache I. Maternal and fetal complications of the hypothyroidism-related pregnancy. Maedica (Bucur) 2010; 5(2):116-123.
10. Léger J, Carel JC. Hyperthyroidism in childhood: Causes, when and how to treat. J Clin Res Pediatr Endocrinol 2013; 5 Suppl 1(Suppl 1):50-56. DOI: https://doi.org/10.4274/jcrpe.854
11. Rotondi M, Cappelli C, Pirali B, Pirola I, Magri F, Fonte R, Castellano M, Rosei EA, Chiovato L. The effect of pregnancy on subsequent relapse from Graves' disease after a successful course of antithyroid drug therapy. J Clin Endocrinol Metab 2008; 93(10):3985-3988. DOI: https://doi.org/10.1210/jc.2008-0966
12. Sjölin G, Holmberg M, Törring O, Byström K, Khamisi S, de Laval D, Abraham-Nordling M, Calissendorff J, Lantz M, Hallengren B, Filipsson Nyström H, Wallin G. The long-term outcome of treatment for Graves' hyperthyroidism. Thyroid 2019; 29(11):1545-1557. DOI: https://doi.org/10.1089/thy.2019.0085
13. Franco JS, Amaya-Amaya J, Anaya JM. Thyroid disease and autoimmune diseases. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., editors. Autoimmunity: From Bench to Bedside [Internet]. Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 30. Available at: https://www.ncbi.nlm.nih.gov/books/NBK459466/
14. Wang Q, Jiang Y, Lv H, Lu Q, Tao S, Qin R, Huang L, Liu C, Xu X, Lv S, Li M, Li Z, Du J, Lin Y, Ma H, Chi X, Hu Z, Jiang T, Zhang G. Association of maternal mild hypothyroidism with offspring neurodevelopment in TPOAb-negative women: A prospective cohort study. Front Endocrinol (Lausanne) 2022; 13:884851. DOI: https://doi.org/10.3389/fendo.2022.884851
15. Wang C, Niu Q, Lv H, Li Q, Ma Y, Tan J, Liu C. Elevated TPOAb is a strong predictor of autoimmune development in patients of type 2 diabetes mellitus and non-alcoholic fatty liver disease: A case-control study. Diabetes Metab Syndr Obes 2020; 13:4369-4378. DOI: https://doi.org/10.2147/DMSO.S280231
16. Ghassabian A, Bongers-Schokking JJ, de Rijke YB, van Mil N, Jaddoe VW, de Muinck Keizer-Schrama SM, Hooijkaas H, Hofman A, Visser W, Roman GC, Visser TJ, Verhulst FC, Tiemeier H. Maternal thyroid autoimmunity during pregnancy and the risk of attention deficit/hyperactivity problems in children: The Generation R Study. Thyroid 2012; 22(2):178-86. DOI: https://doi.org/10.1089/thy.2011.0318
17. Lazarus J. Thyroid Regulation and Dysfunction in the Pregnant Patient. [Updated 2016 Jul 21]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available at: https://www.ncbi.nlm.nih.gov/books/NBK279059/
18. Strikić Đula I, Pleić N, Babić Leko M, Gunjača I, Torlak V, Brdar D, Punda A, Polašek O, Hayward C, Zemunik T. Epidemiology of hypothyroidism, hyperthyroidism and positive thyroid antibodies in the Croatian population. Biology (Basel) 2022; 11(3):394. DOI: https://doi.org/10.3390/biology11030394
19. Grigorova M, Sherwin BB. Thyroid hormones and cognitive functioning in healthy, euthyroid women: A correlational study. Horm Behav 2012; 61(4):617-22. DOI: https://doi.org/10.1016/j.yhbeh.2012.02.014
20. Samuels MH. Psychiatric and cognitive manifestations of hypothyroidism. Curr Opin Endocrinol Diabetes Obes 2014; 21(5):377-383. DOI: https://doi.org/10.1097/MED.0000000000000089
21. Akintola AA, Jansen SW, van Bodegom D, van der Grond J, Westendorp RG, de Craen AJ, van Heemst D. Subclinical hypothyroidism and cognitive function in people over 60 years: A systematic review and meta-analysis. Front Aging Neurosci 2015; 7:150. DOI: https://doi.org/10.3389/fnagi.2015.00150
22. Waliszewska-Prosół M, Ejma M. Hashimoto encephalopathy-still more questions than answers. Cells 2022; 11(18):2873. DOI: https://doi.org/10.3390/cells11182873
23. Ravan JR, Chatterjee S, Singh P, Maikap D, Padhan P. Autoimmune rheumatic diseases masquerading as psychiatric disorders: A case series. Mediterr J Rheumatol 2021; 32(2):164-167. DOI: https://doi.org/10.31138/mjr.32.2.164
24. Payer J, Petrovic T, Lisy L, Langer P. Hashimoto encephalopathy: A rare intricate syndrome. Int J Endocrinol Metab 2012; 10(2):506-514. DOI: https://doi.org/10.5812/ijem.4174
25. Li J, Li F. Hashimoto's encephalopathy and seizure disorders. Front Neurol 2019; 10:440. DOI: https://doi.org/10.3389/fneur.2019.00440
26. Joffe RT. Should thyroid replacement therapy be considered for patients with treatment-refractory depression? J Psychiatry Neurosci 2002; 27(1):80.
27. Bauer M, Whybrow PC. Role of thyroid hormone therapy in depressive disorders. J Endocrinol Invest 2021; 44(11):2341-2347. DOI: https://doi.org/10.1007/s40618-021-01600-w
28. Sheehan MT. Biochemical testing of the thyroid: TSH is the best and, oftentimes, only test needed - A review for primary care. Clin Med Res 2016; 14(2):83-92. DOI: https://doi.org/10.3121/cmr.2016.1309
29. van Vliet NA, van Heemst D, Almeida OP, Åsvold BO, Aubert CE, Bae JB, Barnes LE, Bauer DC, Blauw GJ, Brayne C, Cappola AR, Ceresini G, Comijs HC, Dartigues JF, Degryse JM, Dullaart RPF, van Eersel MEA, den Elzen WPJ, Ferrucci L, Fink HA, Flicker L, Grabe HJ, Han JW, Helmer C, Huisman M, Ikram MA, Imaizumi M, de Jongh RT, Jukema JW, Kim KW, Kuller LH, Lopez OL, Mooijaart SP, Moon JH, Moutzouri E, Nauck M, Parle J, Peeters RP, Samuels MH, Schmidt CO, Schminke U, Slagboom PE, Stordal E, Vaes B, Völzke H, Westendorp RGJ, Yamada M, Yeap BB, Rodondi N, Gussekloo J, Trompet S; Thyroid studies collaboration. association of thyroid dysfunction with cognitive function: An individual participant data analysis. JAMA Intern Med 2021; 181(11):1440-1450. DOI: https://doi.org/10.1001/jamainternmed.2021.5078
30. Fu A, Zhou R, Xu X. The synthetic thyroid hormone, levothyroxine, protects cholinergic neurons in the hippocampus of naturally aged mice. Neural Regen Res 2014; 9(8):864-71. DOI: https://doi.org/10.4103/1673-5374.131602
31. Fernández-Lamo I, Montero-Pedrazuela A, Delgado-García JM, Guadaño-Ferraz A, Gruart A. Effects of thyroid hormone replacement on associative learning and hippocampal synaptic plasticity in adult hypothyroid rats. Eur J Neurosci 2009; 30(4):679-692. DOI: https://doi.org/10.1111/j.1460-9568.2009.06862.x
32. Idrose AM. Acute and emergency care for thyrotoxicosis and thyroid storm. Acute Med Surg 2015; 2(3):147-157. DOI: https://doi.org/10.1002/ams2.104
33. Kim MI. Hypothyroidism in Older Adults. [Updated 2020 Jul 14]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available at: https://www.ncbi.nlm.nih.gov/books/NBK279005/
34. Bégin ME, Langlois MF, Lorrain D, Cunnane SC. Thyroid function and cognition during aging. Curr Gerontol Geriatr Res 2008; 2008:474868. DOI: https://doi.org/10.1155/2008/474868
35. Wortsman J, Wavak P. Palpebral redundancy from hypothyroidism. Plast Reconstr Surg. 1980 Jan;65(1):1-3. DOI: https://doi.org/10.1097/00006534-198001000-00001
36. de Jong FJ, Masaki K, Chen H, Remaley AT, Breteler MM, Petrovitch H, White LR, Launer LJ. Thyroid function, the risk of dementia and neuropathologic changes: The Honolulu-Asia aging study. Neurobiol Aging 2009; 30(4):600-606. DOI: https://doi.org/10.1016/j.neurobiolaging.2007.07.019
37. Campbell NL, Unverzagt F, LaMantia MA, Khan BA, Boustani MA. Risk factors for the progression of mild cognitive impairment to dementia. Clin Geriatr Med 2013; 29(4):873-893. DOI: https://doi.org/10.1016/j.cger.2013.07.009
38. Parsaik AK1, Singh B2, Roberts RO3, Pankratz S4, Edwards KK4, Geda YE5, Gharib H6, Boeve BF7, Knopman DS7, Petersen RC7. Hypothyroidism and risk of mild cognitive impairment in elderly persons: A population-based study. JAMA Neurol 2014; 7:201-207. DOI: https://doi.org/10.1001/jamaneurol.2013.5402
39. Noda M. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction. Vitam Horm 2018; 106:313-331. DOI: https://doi.org/10.1016/bs.vh.2017.05.005
40. Swann AC. Thyroid hormone and norepinephrine: Effects on alpha-2, beta, and reuptake sites in cerebral cortex and heart. J Neural Transm 1988; 71(3):195-205. DOI: https://doi.org/10.1007/BF01245713
41. Wiens SC, Trudeau VL. Thyroid hormone and gamma-aminobutyric acid (GABA) interactions in neuroendocrine systems. Comp Biochem Physiol A Mol Integr Physiol 2006; 144(3):332-344. DOI: https://doi.org/10.1016/j.cbpa.2006.01.033
42. Zucchi R, Accorroni A, Chiellini G. Update on 3-iodothyronamine and its neurological and metabolic actions. Front Physiol 2014; 5:402. DOI: https://doi.org/10.3389/fphys.2014.00402
43. Ceballos A, Belinchon MM, Sanchez-Mendoza E, Grijota-Martinez C, Dumitrescu AM, Refetoff S, Morte B, Bernal J. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3'-triiodo-L-thyronine. Endocrinology. 2009; 150(5):2491-2496. DOI: https://doi.org/10.1210/en.2008-1616
44. Miller GM. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem 2011; 116(2):164-176. DOI: https://doi.org/10.1111/j.1471-4159.2010.07109.x
45. Dinter J, Mühlhaus J, Wienchol CL, Yi CX, Nürnberg D, Morin S, Grüters A, Köhrle J, Schöneberg T, Tschöp M, Krude H, Kleinau G, Biebermann H. Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5. PLoS One 2015; 10(2):e0117774. DOI: https://doi.org/10.1371/journal.pone.0117774
46. Valcana T, Einstein ER, Csejtey J, Dalal KB, Timiras PS. Influence of thyroid hormones on myelin proteins in the developing rat brain. J Neurol Sci 1975; 25(1):19-27. DOI: https://doi.org/10.1016/0022-510x(75)90183-5
47. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet 2017; 390(10101):1550-1562. DOI: https://doi.org/10.1016/S0140-6736(17)30703-1
48. Kim JH, Lee HS, Kim YH, Kwon MJ, Kim JH, Min CY, Yoo DM, Choi HG. The association between thyroid diseases and Alzheimer’s disease in a national health screening cohort in Korea. Front Endocrinol (Lausanne) 2022; 13:815063. DOI: https://doi.org/10.3389/fendo.2022.815063
49. Przybylak M, Grabowski J, Bidzan L. Cognitive functions and thyroid hormones secretion disorders. Psychiatr Pol 2021; 55(2):309-321. English, Polish. DOI: https://doi.org/10.12740/PP/112470
50. Tingi E, Syed AA, Kyriacou A, Mastorakos G, Kyriacou A. Benign thyroid disease in pregnancy: A state of the art review. J Clin Transl Endocrinol 2016; 6:37-49. DOI: https://doi.org/10.1016/j.jcte.2016.11.001
51. Guo Y, Zynat J, Xing S, Xin L, Li S, Mammat N, Chen Y, Zhao L, Zhao H, Wang X. Immunological changes of T helper cells in flow cytometer-sorted CD4+ T cells from patients with Hashimoto’s thyroiditis. Exp Ther Med 2018; 15(4):3596-3602. DOI: https://doi.org/10.3892/etm.2018.5825
52. Twito O, Shapiro Y, Golan-Cohen A, Dickstein Y, Ness-Abramof R, Shapiro M. Anti-thyroid antibodies, parietal cell antibodies and tissue transglutaminase antibodies in patients with autoimmune thyroid disease. Arch Med Sci 2018; 14(3):516-520. DOI: https://doi.org/10.5114/aoms.2016.58743
53. Zhang W, Qian F, Lu G, Wu Y, Li R, Xia L, Zhao R, Lin Y, Gu M, Chen W. Pituitary stalk interruption syndrome: A rare case report and literature review. Medicine (Baltimore) 2020; 99(50):e23266. DOI: https://doi.org/10.1097/MD.0000000000023266
54. Persani L, Cangiano B, Bonomi M. The diagnosis and management of central hypothyroidism in 2018. Endocr Connect 2019; 8(2):R44-R54. DOI: https://doi.org/10.1530/EC-18-0515
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.