3D Printing Model Optimization
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Published
Feb 28, 2023
Abstract
The instantiation of 3D models has become much more convenient attributable to the development of 3D printing technology, but processing digital geometry now faces new difficulties. The model optimization inspired by 3D printing is summarized in this paper from the two processes of model creation and printing in order to be able to print out models that have accomplished some defined functionalities.
##plugins.themes.bootstrap3.article.details##
Keywords
3D Printing, Modeling, Design Optimization, Printing Optimization
References
1. Ou KL, Hosseinkhani H. Development of 3D in vitro technology for medical applications. Int J Mol Sci 2014; 15(10):17938-17962. DOI: https://doi.org/10.3390/ijms151017938
2. D’Aveni R. The 3-D printing revolution. Harv Bus Rev 2015; May:40-48. Available at: https://hbr.org/2015/05/the-3-d-printing-revolution
3. Hossain MA, Zhumabekova A, Paul SC, Kim JR. A review of 3D printing in construction and its impact on the labor market. Sustainability 2020; 12(20):8492. DOI: https://doi.org/10.3390/su12208492
4. What are the advantages and disadvantages of 3d printing? Available at: https://www.twi-global.com/technical-knowledge/faqs/what-is-3d-printing/pros-and-cons
5. Nelaturi S, Kim W, Kurtoglu T. Manufacturability feedback and model correction for additive manufacturing. J Manuf Sci Eng 2015; 137:021015. DOI: https://doi.org/10.1115/1.4029374
6. Stava O, Vanek J, Benes B, Carr N, Měch R. Stress relief: Improving structural strength of 3D printable objects. ACM Trans Graph 2012; 31(4):48. DOI: https://doi.org/10.1145/2185520.2185544
7. Umetani N, Schmidt R. Cross-sectional structural analysis for 3D printing optimization. In SIGGRAPH Asia 2013 Technical Briefs (SA ’13) 2013; Association for Computing Machinery, New York, NY, USA, 5:1-4. DOI: https://doi.org/10.1145/2542355.2542361
8. Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O. Make it stand: Balancing shapes for 3D fabrication. ACM Trans Graph 2013; 32(4):81. DOI: https://doi.org/10.1145/2461912.2461957
9. Bächer M, Whiting E, Bickel B, Sorkine-Hornung O. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans Graph 2014; 33(4):96. DOI: https://doi.org/10.1145/2601097.2601157
10. Yamanaka D, Suzuki H, Ohtake Y. Density aware shape modeling to control mass properties of 3D printed objects. In SIGGRAPH Asia 2014 Technical Briefs (SA ’14). Association for Computing Machinery, New York, NY, USA, 7:1-4. DOI: https://doi.org/10.1145/2669024.2669040
11. Bächer M, Bickel B, James DL, Pfister H. Fabricating articulated characters from skinned meshes. ACM Trans Graph 2012; 31(4):47. DOI: https://doi.org/10.1145/2185520.2185543
12. Calì J, Calian D A, Amati C, Kleinberger R, Steed A, Kautz J, Weyrich T. 3D-printing of non-assembly, articulated models. ACM Trans Graph 2012; 31(6):130. DOI: https://doi.org/10.1145/2366145.2366149
13. Zhou Y, Sueda S, Matusik W, Shamir A. Boxelization: Folding 3D objects into boxes. ACM Trans Graph 2014; 33(4):71. DOI: https://doi.org/10.1145/2601097.2601173
14. Megaro V, Thomaszewski B, Gauge D, Grinspun E, Coros S, Gross M. ChaCra: An interactive design system for rapid character crafting. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’14), 2014; Eurographics Association, Goslar, DEU, 123-130.
15. Medellin H, Lim T, Corney J, Ritchie JM, and Davies JBC. Automatic subdivision and refinement of large components for rapid prototyping production. ASME J Comput Inf Sci Eng 2007; 7(3):249-258. DOI: https://doi.org/10.1115/1.2753162
16. Luo L, Baran I, Rusinkiewicz S, Matusik W. Chopper: Partitioning models into 3D-printable parts. ACM Trans Graph 2012; 31(6):129. DOI: https://doi.org/10.1145/2366145.2366148
17. Wang W, Wang T Y, Yang Z, Liu L, Tong X, Tong W, Deng J, Chen F, Liu X. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans Graph 2013; 32(6):177. DOI: https://doi.org/10.1145/2508363.2508382
18. Lu L, Sharf A, Zhao H, Wei Y, Fan Q, Chen X, Savoye Y, Tu C, Cohen-Or D, Chen B. Build-to-last: Strength to weight 3D printed objects. ACM Trans Graph 2014; 33(4):97. DOI: https://doi.org/10.1145/2601097.2601168
19. Vanek J, Galicia J A, Benes B, Měch R, Carr N, Stava O, Miller GS. PackMerger: A 3D print volume optimizer. Comput Graph Forum 2014; 33(6):322-332. DOI: https://doi.org/10.1111/cgf.12353
20. Filin S, Pfeifer N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS J Photogramm Remote Sens 2006; 60(2):71-80. DOI: https://doi.org/10.1016/j.isprsjprs.2005.10.005
21. Bickel B, Bächer M, Otaduy M A, Lee HR, Pfister H, Gross M, Matusik W. Design and fabrication of materials with desired deformation behavior. ACM Trans Graph 2010; 29(3):63. DOI: https://doi.org/10.1145/1833349.1778800
22. Hašan M, Fuchs M, Matusik W, Pfister H, Rusinkiewicz S. Physical reproduction of materials with specified subsurface scattering. ACM Trans Graph 2010; 29(4):61. DOI: https://doi.org/10.1145/1833349.1778798
23. Chen D, Levin D I W, Didyk P, Sitthi-Amorn P, Matusik W. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans Graph 2013; 32(4):135. DOI: https://doi.org/10.1145/2461912.2461994
24. Vidimče K, Wang S P, Ragan-Kelley J, Matusik W. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans Graph 2013; 32(4):136. DOI: https://doi.org/10.1145/2461912.2461993
25. Jiang J, Xu X, Stringer J. Support Structures for Additive Manufacturing: A Review. J Manuf Mater Process 2018; 2(4):64. DOI: https://doi.org/10.3390/jmmp2040064
26. Dumas J, Hergel J, Lefebvre S. Bridging the gap: Automated steady scaffoldings for 3D printing. ACM Trans Graph 2014; 33(4):98. DOI: https://doi.org/10.1145/2601097.2601153
27. Hu K, Jin S, Wang CCL. Support slimming for single material based additive manufacturing. Comput Aid Design, 2015, 65:1-10. DOI: https://doi.org/10.1016/j.cad.2015.03.001
28. Wang WM, Zanni C, Kobbelt L. Improved surface quality in 3D printing by optimizing the printing direction. Comput Graph Forum 2016; 35:59-70. DOI: https://doi.org/10.1111/cgf.12811
2. D’Aveni R. The 3-D printing revolution. Harv Bus Rev 2015; May:40-48. Available at: https://hbr.org/2015/05/the-3-d-printing-revolution
3. Hossain MA, Zhumabekova A, Paul SC, Kim JR. A review of 3D printing in construction and its impact on the labor market. Sustainability 2020; 12(20):8492. DOI: https://doi.org/10.3390/su12208492
4. What are the advantages and disadvantages of 3d printing? Available at: https://www.twi-global.com/technical-knowledge/faqs/what-is-3d-printing/pros-and-cons
5. Nelaturi S, Kim W, Kurtoglu T. Manufacturability feedback and model correction for additive manufacturing. J Manuf Sci Eng 2015; 137:021015. DOI: https://doi.org/10.1115/1.4029374
6. Stava O, Vanek J, Benes B, Carr N, Měch R. Stress relief: Improving structural strength of 3D printable objects. ACM Trans Graph 2012; 31(4):48. DOI: https://doi.org/10.1145/2185520.2185544
7. Umetani N, Schmidt R. Cross-sectional structural analysis for 3D printing optimization. In SIGGRAPH Asia 2013 Technical Briefs (SA ’13) 2013; Association for Computing Machinery, New York, NY, USA, 5:1-4. DOI: https://doi.org/10.1145/2542355.2542361
8. Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O. Make it stand: Balancing shapes for 3D fabrication. ACM Trans Graph 2013; 32(4):81. DOI: https://doi.org/10.1145/2461912.2461957
9. Bächer M, Whiting E, Bickel B, Sorkine-Hornung O. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans Graph 2014; 33(4):96. DOI: https://doi.org/10.1145/2601097.2601157
10. Yamanaka D, Suzuki H, Ohtake Y. Density aware shape modeling to control mass properties of 3D printed objects. In SIGGRAPH Asia 2014 Technical Briefs (SA ’14). Association for Computing Machinery, New York, NY, USA, 7:1-4. DOI: https://doi.org/10.1145/2669024.2669040
11. Bächer M, Bickel B, James DL, Pfister H. Fabricating articulated characters from skinned meshes. ACM Trans Graph 2012; 31(4):47. DOI: https://doi.org/10.1145/2185520.2185543
12. Calì J, Calian D A, Amati C, Kleinberger R, Steed A, Kautz J, Weyrich T. 3D-printing of non-assembly, articulated models. ACM Trans Graph 2012; 31(6):130. DOI: https://doi.org/10.1145/2366145.2366149
13. Zhou Y, Sueda S, Matusik W, Shamir A. Boxelization: Folding 3D objects into boxes. ACM Trans Graph 2014; 33(4):71. DOI: https://doi.org/10.1145/2601097.2601173
14. Megaro V, Thomaszewski B, Gauge D, Grinspun E, Coros S, Gross M. ChaCra: An interactive design system for rapid character crafting. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’14), 2014; Eurographics Association, Goslar, DEU, 123-130.
15. Medellin H, Lim T, Corney J, Ritchie JM, and Davies JBC. Automatic subdivision and refinement of large components for rapid prototyping production. ASME J Comput Inf Sci Eng 2007; 7(3):249-258. DOI: https://doi.org/10.1115/1.2753162
16. Luo L, Baran I, Rusinkiewicz S, Matusik W. Chopper: Partitioning models into 3D-printable parts. ACM Trans Graph 2012; 31(6):129. DOI: https://doi.org/10.1145/2366145.2366148
17. Wang W, Wang T Y, Yang Z, Liu L, Tong X, Tong W, Deng J, Chen F, Liu X. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans Graph 2013; 32(6):177. DOI: https://doi.org/10.1145/2508363.2508382
18. Lu L, Sharf A, Zhao H, Wei Y, Fan Q, Chen X, Savoye Y, Tu C, Cohen-Or D, Chen B. Build-to-last: Strength to weight 3D printed objects. ACM Trans Graph 2014; 33(4):97. DOI: https://doi.org/10.1145/2601097.2601168
19. Vanek J, Galicia J A, Benes B, Měch R, Carr N, Stava O, Miller GS. PackMerger: A 3D print volume optimizer. Comput Graph Forum 2014; 33(6):322-332. DOI: https://doi.org/10.1111/cgf.12353
20. Filin S, Pfeifer N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS J Photogramm Remote Sens 2006; 60(2):71-80. DOI: https://doi.org/10.1016/j.isprsjprs.2005.10.005
21. Bickel B, Bächer M, Otaduy M A, Lee HR, Pfister H, Gross M, Matusik W. Design and fabrication of materials with desired deformation behavior. ACM Trans Graph 2010; 29(3):63. DOI: https://doi.org/10.1145/1833349.1778800
22. Hašan M, Fuchs M, Matusik W, Pfister H, Rusinkiewicz S. Physical reproduction of materials with specified subsurface scattering. ACM Trans Graph 2010; 29(4):61. DOI: https://doi.org/10.1145/1833349.1778798
23. Chen D, Levin D I W, Didyk P, Sitthi-Amorn P, Matusik W. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans Graph 2013; 32(4):135. DOI: https://doi.org/10.1145/2461912.2461994
24. Vidimče K, Wang S P, Ragan-Kelley J, Matusik W. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans Graph 2013; 32(4):136. DOI: https://doi.org/10.1145/2461912.2461993
25. Jiang J, Xu X, Stringer J. Support Structures for Additive Manufacturing: A Review. J Manuf Mater Process 2018; 2(4):64. DOI: https://doi.org/10.3390/jmmp2040064
26. Dumas J, Hergel J, Lefebvre S. Bridging the gap: Automated steady scaffoldings for 3D printing. ACM Trans Graph 2014; 33(4):98. DOI: https://doi.org/10.1145/2601097.2601153
27. Hu K, Jin S, Wang CCL. Support slimming for single material based additive manufacturing. Comput Aid Design, 2015, 65:1-10. DOI: https://doi.org/10.1016/j.cad.2015.03.001
28. Wang WM, Zanni C, Kobbelt L. Improved surface quality in 3D printing by optimizing the printing direction. Comput Graph Forum 2016; 35:59-70. DOI: https://doi.org/10.1111/cgf.12811
How to Cite
Alam, R. (2023). 3D Printing Model Optimization. Science Insights, 42(2), 827–831. https://doi.org/10.15354/si.23.re133
Issue
Section
Review
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.