##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Mar 29, 2023

Eva Zimny  

Abstract

Drug addiction is a chronic, relapsing brain disease. Various addictive drugs act on the reward circuit and eventually cause changes in the release of neurotransmitters, resulting in a rewarding effect. Among them, the monoamine neurotransmitters 5-hydroxytryptamine, norepinephrine and dopamine play an essential role in drug addiction. The role and mechanism of monoamine neurotransmitters in drug addiction are reviewed and discussed.

##plugins.themes.bootstrap3.article.details##

Keywords

Drug Addiction, Monoamine Neurotransmitter, Serotonin, Norepinephrine, Dopamine, Reward Circuit

References
1. Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001; 24(2):97-129. DOI: https://doi.org/10.1016/S0893-133X(00)00195-0

2. Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 2000; 25(3):515-532. DOI: https://doi.org/10.1016/s0896-6273(00)81056-9

3. Jiang Y, Zou D, Li Y, Gu S, Dong J, Ma X, Xu S, Wang F, Huang JH. Monoamine neurotransmitters control basic emotions and affect major depressive disorders. Pharmaceuticals (Basel) 2022; 15(10):1203. DOI: https://doi.org/10.3390/ph15101203

4. Zhang G, Stackman RW Jr. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 2015; 6:225. DOI: https://doi.org/10.3389/fphar.2015.00225

5. Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. Mol Brain 2017; 10(1):28. DOI: https://doi.org/10.1186/s13041-017-0306-y

6. Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdère P, Caccia S, Esposito E, Spampinato U. 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 2002; 26(3):311-324. DOI: https://doi.org/10.1016/S0893-133X(01)00333-5

7. Dunn KE, Huhn AS, Bergeria CL, Gipson CD, Weerts EM. Non-opioid neurotransmitter systems that contribute to the opioid withdrawal syndrome: A review of preclinical and human evidence. J Pharmacol Exp Ther 2019; 371(2):422-452. DOI: https://doi.org/10.1124/jpet.119.258004

8. Li B, Jiang J, Zhou L, Tao X, Sun Q, Liu J, Liu Y, Pang G. Blockade of 5-hydroxytryptamine 2A receptor attenuates precipitation of naloxone-induced withdrawal symptoms in opioid-exposed mice. Front Behav Neurosci 2022; 15:797217. DOI: https://doi.org/10.3389/fnbeh.2021.797217

9. Kosten TR, George TP. The neurobiology of opioid dependence: Implications for treatment. Sci Pract Perspect 2002; 1(1):13-20. DOI: https://doi.org/10.1151/spp021113

10. Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 2007; 113(2):296-320. DOI: https://doi.org/10.1016/j.pharmthera.2006.08.004

11. Thomas DM, Angoa Pérez M, Francescutti-Verbeem DM, Shah MM, Kuhn DM. The role of endogenous serotonin in methamphetamine-induced neurotoxicity to dopamine nerve endings of the striatum. J Neurochem 2010; 115(3):595-605. DOI: https://doi.org/10.1111/j.1471-4159.2010.06950.x

12. Simmler LD, Anacker AMJ, Levin MH, Vaswani NM, Gresch PJ, Nackenoff AG, Anastasio NC, Stutz SJ, Cunningham KA, Wang J, Zhang B, Henry LK, Stewart A, Veenstra-VanderWeele J, Blakely RD. Blockade of the 5-HT transporter contributes to the behavioural, neuronal and molecular effects of cocaine. Br J Pharmacol 2017; 174(16):2716-2738. DOI: https://doi.org/10.1111/bph.13899

13. Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. Brain Res Rev 2009; 60(2):379-407. DOI: https://doi.org/10.1016/j.brainresrev.2009.03.002

14. Dunlap LE, Andrews AM, Olson DE. Dark classics in chemical neuroscience: 3,4-Methylenedioxymethamphetamine. ACS Chem Neurosci 2018; 9(10):2408-2427. DOI: https://doi.org/10.1021/acschemneuro.8b00155

15. Huff C, Bhide N, Schroering A, Yamamoto BK, Gudelsky GA. Effect of repeated exposure to MDMA on the function of the 5-HT transporter as assessed by synaptosomal 5-HT uptake. Brain Res Bull 2013; 91:52-7. DOI: https://doi.org/10.1016/j.brainresbull.2013.01.003

16. Lizarraga LE, Phan AV, Cholanians AB, Herndon JM, Lau SS, Monks TJ. Serotonin reuptake transporter deficiency modulates the acute thermoregulatory and locomotor activity response to 3,4-(±)-methylenedioxymethamphetamine, and attenuates depletions in serotonin levels in SERT-KO rats. Toxicol Sci 2014; 139(2):421-431. DOI: https://doi.org/10.1093/toxsci/kfu039

17. Mateo Y, Budygin EA, John CE, Jones SR. Role of serotonin in cocaine effects in mice with reduced dopamine transporter function. Proc Natl Acad Sci USA 2004; 101(1):372-377. DOI: https://doi.org/10.1073/pnas.0207805101

18. Howell LL, Cunningham KA. Serotonin 5-HT2 receptor interactions with dopamine function: Implications for therapeutics in cocaine use disorder. Pharmacol Rev 2015; 67(1):176-197. DOI: https://doi.org/10.1124/pr.114.009514

19. Nestler EJ. The neurobiology of cocaine addiction. Sci Pract Perspect 2005; 3(1):4-10. DOI: https://doi.org/10.1151/spp05314

20. Juárez Olguín H, Calderón Guzmán D, Hernández García E, Barragán Mejía G. The Role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev 2016; 2016:9730467. DOI: https://doi.org/10.1155/2016/9730467

21. Doyle MA, Mazei-Robison MS. Opioid-Induced Molecular and Cellular Plasticity of Ventral Tegmental Area Dopamine Neurons. Cold Spring Harb Perspect Med 2021; 11(2):a039362. DOI: https://doi.org/10.1101/cshperspect.a039362

22. Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith AC, Roberts-Wolfe D, Kalivas PW. The nucleus accumbens: Mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev. 2016 Jul; 68(3):816-871. DOI: https://doi.org/10.1124/pr.116.012484

23. George BE, Dawes MH, Peck EG, Jones SR. Altered accumbal dopamine terminal dynamics following chronic heroin self-administration. Int J Mol Sci 2022; 23(15):8106. DOI: https://doi.org/10.3390/ijms23158106

24. Cheng GL, Liu YP, Chan CC, So KF, Zeng H, Lee TM. Neurobiological underpinnings of sensation seeking trait in heroin abusers. Eur Neuropsychopharmacol 2015; 25(11):1968-80. DOI: https://doi.org/10.1016/j.euroneuro.2015.07.023

25. Li GZ, Liu ZH, Wei X, Zhao P, Yang CX, Xu MY. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats. Iran J Basic Med Sci 2015; 18(7):664-671

26. Chen M, Zhao Y, Yang H, Luan W, Song J, Cui D, Dong Y, Lai B, Ma L, Zheng P. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation. Elife 2015; 4:e09275. DOI: https://doi.org/10.7554/eLife.09275

27. Shah M, Huecker MR. Opioid withdrawal. [Updated 2022 Sep 9]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK526012/

28. Mazei-Robison MS, Nestler EJ. Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med 2012; 2(7):a012070. DOI: https://doi.org/10.1101/cshperspect.a012070

29. Gao JT, Jordan CJ, Bi GH, He Y, Yang HJ, Gardner EL, Xi ZX. Deletion of the type 2 metabotropic glutamate receptor increases heroin abuse vulnerability in transgenic rats. Neuropsychopharmacology 2018; 43(13):2615-2626. DOI: https://doi.org/10.1038/s41386-018-0231-5

30. Cai J, Tong Q. Anatomy and function of ventral tegmental area glutamate neurons. Front Neural Circuits 2022; 16:867053. DOI: https://doi.org/10.3389/fncir.2022.867053

31. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: Beyond dopamine reward circuitry. Proc Natl Acad Sci USA 2011; 108(37):15037-15042. DOI: https://doi.org/10.1073/pnas.1010654108

32. Zhu F, Liu L, Li J, Liu B, Wang Q, Jiao R, Xu Y, Wang L, Sun S, Sun X, Younus M, Wang C, Hokfelt T, Zhang B, Gu H, Xu ZD, Zhou Z. Cocaine increases quantal norepinephrine secretion through NET-dependent PKC activation in locus coeruleus neurons. Cell Rep 2022; 40(7):111199. DOI: https://doi.org/10.1016/j.celrep.2022.111199

33. Čechová B, Šlamberová R. Methamphetamine, neurotransmitters and neurodevelopment. Physiol Res 2021; 70(S3):S301-S315. DOI: https://doi.org/10.33549/physiolres.934821

34. Nickell JR, Siripurapu KB, Vartak A, Crooks PA, Dwoskin LP. The vesicular monoamine transporter-2: An important pharmacological target for the discovery of novel therapeutics to treat methamphetamine abuse. Adv Pharmacol 2014; 69:71-106. DOI: https://doi.org/10.1016/B978-0-12-420118-7.00002-0

35. Everitt BJ. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories--indications for novel treatments of addiction. Eur J Neurosci 2014; 40(1):2163-2182. DOI: https://doi.org/10.1111/ejn.12644

36. Volkow ND, Michaelides M, Baler R. The neuroscience of drug reward and addiction. Physiol Rev 2019; 99(4):2115-2140. DOI: https://doi.org/10.1152/physrev.00014.2018

37. Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R. Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 2014; 39(5):1066-1080. DOI: https://doi.org/10.1038/npp.2013.307

38. Halpin LE, Northrop NA, Yamamoto BK. Ammonia mediates methamphetamine-induced increases in glutamate and excitotoxicity. Neuropsychopharmacology 2014; 39(4):1031-1038. DOI: https://doi.org/10.1038/npp.2013.306

39. Lupica CR, Riegel AC, Hoffman AF. Marijuana and cannabinoid regulation of brain reward circuits. Br J Pharmacol 2004; 143(2):227-234. DOI: https://doi.org/10.1038/sj.bjp.0705931

40. Peters KZ, Oleson EB, Cheer JF. A brain on cannabinoids: The role of dopamine release in reward seeking and addiction. Cold Spring Harb Perspect Med 2021; 11(1):a039305. DOI: https://doi.org/10.1101/cshperspect.a039305

41. Gerth AI, Alhadeff AL, Grill HJ, Roitman MF. Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem. Brain Res 2017; 1655:252-260. DOI: https://doi.org/10.1016/j.brainres.2016.10.022

42. Cenci D, Carbone MG, Callegari C, Maremmani I. Psychomotor symptoms in chronic cocaine users: An interpretative model. Int J Environ Res Public Health 2022; 19(3):1897. DOI: https://doi.org/10.3390/ijerph19031897

43. Izenwasser S. The role of the dopamine transporter in cocaine abuse. Neurotox Res 2004; 6(5):379-383. DOI: https://doi.org/10.1007/BF03033312

44. Verma V. Classic studies on the interaction of cocaine and the dopamine transporter. Clin Psychopharmacol Neurosci 2015; 13(3):227-238. DOI: https://doi.org/10.9758/cpn.2015.13.3.227

45. Harris JJ, Attwell D. The energetics of CNS white matter. J Neurosci 2012; 32(1):356-371. DOI: https://doi.org/10.1523/JNEUROSCI.3430-11.2012

46. McGinnis MM, Siciliano CA, Jones SR. Dopamine D3 autoreceptor inhibition enhances cocaine potency at the dopamine transporter. J Neurochem 2016; 138(6):821-829. DOI: https://doi.org/10.1111/jnc.13732

47. Wise RA, Kiyatkin EA. Differentiating the rapid actions of cocaine. Nat Rev Neurosci 2011; 12(8):479-484. DOI: https://doi.org/10.1038/nrn3043

48. Oe Y, Tominaga-Yoshino K, Hasegawa S, Ogura A. Dendritic spine dynamics in synaptogenesis after repeated LTP inductions: Dependence on pre-existing spine density. Sci Rep 2013; 3:1957. DOI: https://doi.org/10.1038/srep01957

49. Shnitko TA, Mace KD, Sullivan KM, Martin WK, Andersen EH, Williams Avram SK, Johns JM, Robinson DL. Use of fast-scan cyclic voltammetry to assess phasic dopamine release in rat models of early postpartum maternal behavior and neglect. Behav Pharmacol 2017; 28(8):648-660. DOI: https://doi.org/10.1097/FBP.0000000000000347

50. Le Merrer J, Becker JA, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89(4):1379-1412. DOI: https://doi.org/10.1152/physrev.00005.2009

51. Van Bockstaele EJ, Reyes BA, Valentino RJ. The locus coeruleus: A key nucleus where stress and opioids intersect to mediate vulnerability to opiate abuse. Brain Res 2010; 1314:162-174. DOI: https://doi.org/10.1016/j.brainres.2009.09.036

52. Valentino RJ, Van Bockstaele E. Endogenous opioids: The downside of opposing stress. Neurobiol Stress 2015; 1:23-32. DOI: https://doi.org/10.1016/j.ynstr.2014.09.006

53. McClung CA, Nestler EJ, Zachariou V. Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 2005; 25(25):6005-6015. DOI: https://doi.org/10.1523/JNEUROSCI.0062-05.2005

54. Mazei-Robison MS, Nestler EJ. Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med 2012; 2(7):a012070. DOI: https://doi.org/10.1101/cshperspect.a012070

55. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35(1):217-238. DOI: https://doi.org/10.1038/npp.2009.110. Erratum in: Neuropsychopharmacology 2010; 35(4):1051.

56. Kosten TR, Baxter LE. Review article: Effective management of opioid withdrawal symptoms: A gateway to opioid dependence treatment. Am J Addict 2019; 28(2):55-62. DOI: https://doi.org/10.1111/ajad.12862

57. Ferrucci M, Limanaqi F, Ryskalin L, Biagioni F, Busceti CL, Fornai F. The effects of amphetamine and methamphetamine on the release of norepinephrine, dopamine and acetylcholine from the brainstem reticular formation. Front Neuroanat 2019; 13:48. DOI: https://doi.org/10.3389/fnana.2019.00048

58. Bucci D, Busceti CL, Calierno MT, Di Pietro P, Madonna M, Biagioni F, Ryskalin L, Limanaqi F, Nicoletti F, Fornai F. Systematic morphometry of catecholamine nuclei in the brainstem. Front Neuroanat 2017; 11:98. DOI: https://doi.org/10.3389/fnana.2017.00098

59. Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. DOI: https://doi.org/10.1016/j.neubiorev.2018.02.001

60. Gerlach M, Grünblatt E, Lange KW. Is the treatment with psychostimulants in children and adolescents with attention deficit hyperactivity disorder harmful for the dopaminergic system? Atten Defic Hyperact Disord 2013; 5(2):71-81. DOI: https://doi.org/10.1007/s12402-013-0105-y

61. Janak PH, Bowers MS, Corbit LH. Compound stimulus presentation and the norepinephrine reuptake inhibitor atomoxetine enhance long-term extinction of cocaine-seeking behavior. Neuropsychopharmacology 2012; 37(4):975-985. DOI: https://doi.org/10.1038/npp.2011.281

62. Wang H, Treadway T, Covey DP, Cheer JF, Lupica CR. Cocaine-induced endocannabinoid mobilization in the ventral tegmental area. Cell Rep 2015; 12(12):1997-2008. DOI: https://doi.org/10.1016/j.celrep.2015.08.041

63. Angoa-Pérez M, Anneken JH, Kuhn DM. Neurotoxicology of synthetic cathinone analogs. Curr Top Behav Neurosci 2017; 32:209-230. DOI: https://doi.org/10.1007/7854_2016_21

64. Erb S. Evaluation of the relationship between anxiety during withdrawal and stress-induced reinstatement of cocaine seeking. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(5):798-807. DOI: https://doi.org/10.1016/j.pnpbp.2009.11.025

65. Kampman KM. New medications for the treatment of cocaine dependence. Psychiatry (Edgmont) 2005; 2(12):44-48.

66. Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Touriño C, Bonci A, Deisseroth K, de Lecea L. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 2011; 31(30):10829-10835. DOI: https://doi.org/10.1523/JNEUROSCI.2246-11.2011

67. Liu Z, Zhou J, Li Y, Hu F, Lu Y, Ma M, Feng Q, Zhang JE, Wang D, Zeng J, Bao J, Kim JY, Chen ZF, El Mestikawy S, Luo M. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 2014; 81(6):1360-1374. DOI: https://doi.org/10.1016/j.neuron.2014.02.010
How to Cite
Zimny, E. (2023). Monoamine Neurotransmitters and Drug Addiction. Science Insights, 42(3), 837–842. https://doi.org/10.15354/si.23.re216
Section
Review