On the Role of Insula in Drug Addiction
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Drug addiction is a chronic, relapsing brain disease with limited treatment options and a high recurrence rate. Neuromodulation techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation, hold great therapeutic promise in the treatment of drug addiction. The insula is a key brain region in drug addiction, and its value as a neuromodulatory target in drug addiction needs further exploration. This article presents preclinical and clinical evidence for the role of the insula in drug addiction and explores its promise as a target for the treatment of drug addiction.
##plugins.themes.bootstrap3.article.details##
Insula, Neuromodulation, Drug Addiction, Deep Brain Stimulation, Mechanism
2. Substance use disorder treatment for people with co-occurring disorders: Updated 2020. Rockville (MD): Substance Abuse and Mental Health Services Administration (US); 2020.
3. Bari A, DiCesare J, Babayan D, Runcie M, Sparks H, Wilson B. Neuromodulation for substance addiction in human subjects: A review. Neurosci Biobehav Rev 2018; 95:33-43. DOI: https://doi.org/10.1016/j.neubiorev.2018.09.013
4. Angres DH, Bettinardi-Angres K. The disease of addiction: Origins, treatment, and recovery. Dis Mon 2008; 54(10):696-721. DOI: https://doi.org/10.1016/j.disamonth.2008.07.002
5. Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B, Vendruscolo LF, Wade CL, Whitfield TW Jr, George O. Addiction as a stress surfeit disorder. Neuropharmacology 2014; 76(Pt B):370-382. DOI: https://doi.org/10.1016/j.neuropharm.2013.05.024
6. Xu L, Nan J, Lan Y. The Nucleus Accumbens: A common target in the comorbidity of depression and addiction. Front Neural Circuits 2020; 14:37. DOI: https://doi.org/10.3389/fncir.2020.00037
7. Droutman V, Read SJ, Bechara A. Revisiting the role of the insula in addiction. Trends Cogn Sci 2015; 19(7):414-420. DOI: https://doi.org/10.1016/j.tics.2015.05.005
8. Evrard HC. The organization of the primate insular cortex. Front Neuroanat 2019; 13:43. DOI: https://doi.org/10.3389/fnana.2019.00043
9. Fermin ASR, Friston K, Yamawaki S. An insula hierarchical network architecture for active interoceptive inference. R Soc Open Sci 2022; 9(6):220226. DOI: https://doi.org/10.1098/rsos.220226
10. Li X, Qin F, Liu J, Luo Q, Zhang Y, Hu J, Chen Y, Wei D, Qiu J. An insula-based network mediates the relation between rumination and interoceptive sensibility in the healthy population. J Affect Disord 2022; 299:6-11. DOI: https://doi.org/10.1016/j.jad.2021.11.047
11. Uddin LQ, Nomi JS, Hébert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. J Clin Neurophysiol 2017; 34(4):300-306. DOI: https://doi.org/10.1097/WNP.0000000000000377
12. Naqvi NH, Bechara A. The hidden island of addiction: The insula. Trends Neurosci 2009; 32(1):56-67. DOI: https://doi.org/10.1016/j.tins.2008.09.009
13. Namkung H, Kim SH, Sawa A. The insula: An underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends Neurosci 2017; 40(4):200-207. DOI: https://doi.org/10.1016/j.tins.2017.02.002. Erratum in: Trends Neurosci 2018; 41(8):551-554.
14. Strigo IA, Craig AD. Interoception, homeostatic emotions and sympathovagal balance. Philos Trans R Soc Lond B Biol Sci 2016; 371(1708):20160010. DOI: https://doi.org/10.1098/rstb.2016.0010
15. Paulus MP, Stewart JL. Interoception and drug addiction. Neuropharmacology 2014; 76(Pt B):342-350. DOI: https://doi.org/10.1016/j.neuropharm.2013.07.002
16. Molnar-Szakacs I, Uddin LQ. Anterior insula as a gatekeeper of executive control. Neurosci Biobehav Rev 2022; 139:104736. DOI: https://doi.org/10.1016/j.neubiorev.2022.104736
17. Naqvi NH, Gaznick N, Tranel D, Bechara A. The insula: A critical neural substrate for craving and drug seeking under conflict and risk. Ann N Y Acad Sci 2014; 1316:53-70. DOI: https://doi.org/10.1111/nyas.12415
18. Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science 2007; 315(5811):531-534. DOI: https://doi.org/10.1126/science.1135926
19. Abdolahi A, Williams GC, Benesch CG, Wang HZ, Spitzer EM, Scott BE, Block RC, van Wijngaarden E. Smoking cessation behaviors three months following acute insular damage from stroke. Addict Behav 2015; 51:24-30. DOI: https://doi.org/10.1016/j.addbeh.2015.07.001
20. Gaznick N, Tranel D, McNutt A, Bechara A. Basal ganglia plus insula damage yields stronger disruption of smoking addiction than basal ganglia damage alone. Nicotine Tob Res 2014; 16(4):445-453. DOI: https://doi.org/10.1093/ntr/ntt172
21. Yousefzadeh-Fard Y, Gharedaghi MH, Esmaeili S, Pourbakhtyaran E, Sadaghiani MS, Ghorbani A, Sahraian MA. Stroke modifies drug consumption in opium addicts: Role of the insula. Basic Clin Neurosci 2013; 4(4):307-14.
22. Stoeckel LE, Chai XJ, Zhang J, Whitfield-Gabrieli S, Evins AE. Lower gray matter density and functional connectivity in the anterior insula in smokers compared with never smokers. Addict Biol 2016; 21(4):972-981. DOI: https://doi.org/10.1111/adb.12262
23. Lin F, Wu G, Zhu L, Lei H. Region-specific changes of insular cortical thickness in heavy smokers. Front Hum Neurosci 2019; 13:265. DOI: https://doi.org/10.3389/fnhum.2019.00265
24. Connolly CG, Bell RP, Foxe JJ, Garavan H. Dissociated grey matter changes with prolonged addiction and extended abstinence in cocaine users. PLoS One 2013; 8(3):e59645. DOI: https://doi.org/10.1371/journal.pone.0059645
25. Meade CS, Bell RP, Towe SL, Hall SA. Cocaine-related alterations in fronto-parietal gray matter volume correlate with trait and behavioral impulsivity. Drug Alcohol Depend 2020; 206:107757. DOI: https://doi.org/10.1016/j.drugalcdep.2019.107757
26. Sutherland MT, McHugh MJ, Pariyadath V, Stein EA. Resting state functional connectivity in addiction: Lessons learned and a road ahead. Neuroimage 2012; 62(4):2281-2295. DOI: https://doi.org/10.1016/j.neuroimage.2012.01.117
27. Yuan K, Yu D, Bi Y, Li Y, Guan Y, Liu J, Zhang Y, Qin W, Lu X, Tian J. The implication of frontostriatal circuits in young smokers: A resting-state study. Hum Brain Mapp 2016; 37(6):2013-2026. DOI: https://doi.org/10.1002/hbm.23153
28. Fedota JR, Matous AL, Salmeron BJ, Gu H, Ross TJ, Stein EA. Insula demonstrates a non-linear response to varying demand for cognitive control and weaker resting connectivity with the executive control network in smokers. Neuropsychopharmacology 2016; 41(10):2557-2565. DOI: https://doi.org/10.1038/npp.2016.62
29. Fedota JR, Stein EA. Resting-state functional connectivity and nicotine addiction: Prospects for biomarker development. Ann N Y Acad Sci 2015; 1349(1):64-82. DOI: https://doi.org/10.1111/nyas.12882
30. Geng X, Hu Y, Gu H, Salmeron BJ, Adinoff B, Stein EA, Yang Y. Salience and default mode network dysregulation in chronic cocaine users predict treatment outcome. Brain 2017; 140(5):1513-1524. DOI: https://doi.org/10.1093/brain/awx036
31. Cisler JM, Elton A, Kennedy AP, Young J, Smitherman S, Andrew James G, Kilts CD. Altered functional connectivity of the insular cortex across prefrontal networks in cocaine addiction. Psychiatry Res 2013; 213(1):39-46. DOI: https://doi.org/10.1016/j.pscychresns.2013.02.007
32. Sullivan EV, Müller-Oehring E, Pitel AL, Chanraud S, Shankaranarayanan A, Alsop DC, Rohlfing T, Pfefferbaum A. A selective insular perfusion deficit contributes to compromised salience network connectivity in recovering alcoholic men. Biol Psychiatry 2013; 74(7):547-555. DOI: https://doi.org/10.1016/j.biopsych.2013.02.026
33. Janes AC, Krantz NL, Nickerson LD, Frederick BB, Lukas SE. Craving and cue reactivity in nicotine-dependent tobacco smokers is associated with different insula networks. Biol Psychiatry Cogn Neurosci Neuroimaging 2020; 5(1):76-83. DOI: https://doi.org/10.1016/j.bpsc.2019.09.005
34. Hanlon CA, Dowdle LT, Gibson NB, Li X, Hamilton S, Canterberry M, Hoffman M. Cortical substrates of cue-reactivity in multiple substance dependent populations: Transdiagnostic relevance of the medial prefrontal cortex. Transl Psychiatry 2018; 8(1):186. DOI: https://doi.org/10.1038/s41398-018-0220-9
35. Lynch WJ, Nicholson KL, Dance ME, Morgan RW, Foley PL. Animal models of substance abuse and addiction: Implications for science, animal welfare, and society. Comp Med 2010; 60(3):177-188.
36. Kuhn BN, Kalivas PW, Bobadilla AC. Understanding addiction using animal models. Front Behav Neurosci 2019; 13:262. DOI: https://doi.org/10.3389/fnbeh.2019.00262
37. Contreras M, Billeke P, Vicencio S, Madrid C, Perdomo G, González M, Torrealba F. A role for the insular cortex in long-term memory for context-evoked drug craving in rats. Neuropsychopharmacology 2012; 37(9):2101-2108. DOI: https://doi.org/10.1038/npp.2012.59
38. Arguello AA, Wang R, Lyons CM, Higginbotham JA, Hodges MA, Fuchs RA. Role of the agranular insular cortex in contextual control over cocaine-seeking behavior in rats. Psychopharmacology (Berl) 2017; 234(16):2431-2441. DOI: https://doi.org/10.1007/s00213-017-4632-7
39. Contreras M, Ceric F, Torrealba F. Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 2007; 318(5850):655-658. DOI: https://doi.org/10.1126/science.1145590
40. Donvito G, Piscitelli F, Muldoon P, Jackson A, Vitale RM, D'Aniello E, Giordano C, Ignatowska-Jankowska BM, Mustafa MA, Guida F, Petrie GN, Parker L, Smoum R, Sim-Selley L, Maione S, Lichtman AH, Damaj MI, Di Marzo V, Mechoulam R. N-Oleoyl-glycine reduces nicotine reward and withdrawal in mice. Neuropharmacology 2019; 148:320-331. DOI: https://doi.org/10.1016/j.neuropharm.2018.03.020
41. Scott D, Hiroi N. Deconstructing craving: Dissociable cortical control of cue reactivity in nicotine addiction. Biol Psychiatry 2011; 69(11):1052-9. DOI: https://doi.org/10.1016/j.biopsych.2011.01.023
42. Lasseter HC, Wells AM, Xie X, Fuchs RA. Interaction of the basolateral amygdala and orbitofrontal cortex is critical for drug context-induced reinstatement of cocaine-seeking behavior in rats. Neuropsychopharmacology 2011; 36(3):711-720. DOI: https://doi.org/10.1038/npp.2010.209
43. Knackstedt LA, Moussawi K, Lalumiere R, Schwendt M, Klugmann M, Kalivas PW. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J Neurosci 2010; 30(23):7984-7992. DOI: https://doi.org/10.1523/JNEUROSCI.1244-10.2010
44. Pushparaj A, Hamani C, Yu W, Shin DS, Kang B, Nobrega JN, Le Foll B. Electrical stimulation of the insular region attenuates nicotine-taking and nicotine-seeking behaviors. Neuropsychopharmacology 2013; 38(4):690-698. DOI: https://doi.org/10.1038/npp.2012.235
45. Powell GL, Beckmann JS, Marusich JA, Gipson CD. Nicotine reduction does not alter essential value of nicotine or reduce cue-induced reinstatement of nicotine seeking. Drug Alcohol Depend 2020; 212:108020. DOI: https://doi.org/10.1016/j.drugalcdep.2020.108020
46. Self DW. Diminished role for dopamine D1 receptors in cocaine addiction? Biol Psychiatry 2014; 76(1):2-3. DOI: https://doi.org/10.1016/j.biopsych.2014.04.006
47. Wang TR, Moosa S, Dallapiazza RF, Elias WJ, Lynch WJ. Deep brain stimulation for the treatment of drug addiction. Neurosurg Focus 2018; 45(2):E11. DOI: https://doi.org/10.3171/2018.5.FOCUS18163
48. Spagnolo PA, Goldman D. Neuromodulation interventions for addictive disorders: Challenges, promise, and roadmap for future research. Brain 2017; 140(5):1183-1203. DOI: https://doi.org/10.1093/brain/aww284
49. Chang R, Peng J, Chen Y, Liao H, Zhao S, Zou J, Tan S. Deep brain stimulation in drug addiction treatment: Research progress and perspective. Front Psychiatry 2022; 13:858638. DOI: https://doi.org/10.3389/fpsyt.2022.858638
50. Bolognini N, Ro T. Transcranial magnetic stimulation: Disrupting neural activity to alter and assess brain function. J Neurosci 2010; 30(29):9647-9650. DOI: https://doi.org/10.1523/JNEUROSCI.1990-10.2010
51. Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex 2009; 45(9):1035-1042. DOI: https://doi.org/10.1016/j.cortex.2009.02.007
52. Pashut T, Wolfus S, Friedman A, Lavidor M, Bar-Gad I, Yeshurun Y, Korngreen A. Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Comput Biol 2011; 7(3):e1002022. DOI: https://doi.org/10.1371/journal.pcbi.1002022
53. Gorelick DA, Zangen A, George MS. Transcranial magnetic stimulation in the treatment of substance addiction. Ann N Y Acad Sci 2014; 1327(1):79-93. DOI: https://doi.org/10.1111/nyas.12479
54. Dinur-Klein L, Dannon P, Hadar A, Rosenberg O, Roth Y, Kotler M, Zangen A. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: A prospective, randomized controlled trial. Biol Psychiatry 2014; 76(9):742-749. DOI: https://doi.org/10.1016/j.biopsych.2014.05.020
55. Zangen A, Moshe H, Martinez D, Barnea-Ygael N, Vapnik T, Bystritsky A, Duffy W, Toder D, Casuto L, Grosz ML, Nunes EV, Ward H, Tendler A, Feifel D, Morales O, Roth Y, Iosifescu DV, Winston J, Wirecki T, Stein A, Deutsch F, Li X, George MS. Repetitive transcranial magnetic stimulation for smoking cessation: A pivotal multicenter double-blind randomized controlled trial. World Psychiatry 2021; 20(3):397-404. DOI: https://doi.org/10.1002/wps.20905
56. Li Q, Fu Y, Liu C, Meng Z. Transcranial direct current stimulation of the dorsolateral prefrontal cortex for treatment of neuropsychiatric disorders. Front Behav Neurosci 2022; 16:893955. DOI: https://doi.org/10.3389/fnbeh.2022.893955
57. Chase HW, Boudewyn MA, Carter CS, Phillips ML. Transcranial direct current stimulation: A roadmap for research, from mechanism of action to clinical implementation. Mol Psychiatry 2020; 25(2):397-407. DOI: https://doi.org/10.1038/s41380-019-0499-9
58. Medeiros LF, de Souza IC, Vidor LP, de Souza A, Deitos A, Volz MS, Fregni F, Caumo W, Torres IL. Neurobiological effects of transcranial direct current stimulation: A review. Front Psychiatry 2012; 3:110. DOI: https://doi.org/10.3389/fpsyt.2012.00110
59. Batista EK, Klauss J, Fregni F, Nitsche MA, Nakamura-Palacios EM. A randomized placebo-controlled trial of targeted prefrontal cortex modulation with bilateral tDCS in patients with crack-cocaine dependence. Int J Neuropsychopharmacol 2015; 18(12):pyv066. DOI: https://doi.org/10.1093/ijnp/pyv066
60. Hajloo N, Pouresmali A, Alizadeh Goradel J, Mowlaie M. The Effects of transcranial direct current stimulation of dorsolateral prefrontal cortex on reduction of craving in daily and social smokers. Iran J Psychiatry 2019; 14(4):291-296.
61. Chrysikou EG, Gorey C, Aupperle RL. Anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex alters decision making during approach-avoidance conflict. Soc Cogn Affect Neurosci 2017; 12(3):468-475. DOI: https://doi.org/10.1093/scan/nsw140
62. Ibrahim C, Rubin-Kahana DS, Pushparaj A, Musiol M, Blumberger DM, Daskalakis ZJ, Zangen A, Le Foll B. The insula: A brain stimulation target for the treatment of addiction. Front Pharmacol 2019; 10:720. DOI: https://doi.org/10.3389/fphar.2019.00720
63. Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y, Volkmann J, Krauss JK. Deep brain stimulation: Current challenges and future directions. Nat Rev Neurol 2019; 15(3):148-160. DOI: https://doi.org/10.1038/s41582-018-0128-2
64. Yuen J, Kouzani AZ, Berk M, Tye SJ, Rusheen AE, Blaha CD, Bennet KE, Lee KH, Shin H, Kim JH, Oh Y. Deep brain stimulation for addictive disorders-where are we now? Neurotherapeutics 2022; 19(4):1193-1215. DOI: https://doi.org/10.1007/s13311-022-01229-4
65. Chang H, Gao C, Sun K, Xiao L, Li X, Jiang S, Zhu C, Sun T, Jin Z, Wang F. Continuous high frequency deep brain stimulation of the rat anterior insula attenuates the relapse post withdrawal and strengthens the extinction of morphine seeking. Front Psychiatry 2020; 11:577155. DOI: https://doi.org/10.3389/fpsyt.2020.577155
66. Knight EJ, Min HK, Hwang SC, Marsh MP, Paek S, Kim I, Felmlee JP, Abulseoud OA, Bennet KE, Frye MA, Lee KH. Nucleus accumbens deep brain stimulation results in insula and prefrontal activation: A large animal fMRI study. PLoS One 2013; 8(2):e56640. DOI: https://doi.org/10.1371/journal.pone.0056640
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.